Spaces:
Running
Running
commit
Browse files
app.py
CHANGED
@@ -20,8 +20,28 @@ class Examples(gr.helpers.Examples):
|
|
20 |
self.create()
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# user click the image to get points, and show the points on the image
|
24 |
def get_point(img, sel_pix, evt: gr.SelectData):
|
|
|
25 |
if len(sel_pix) < 5:
|
26 |
sel_pix.append((evt.index, 1)) # default foreground_point
|
27 |
img = cv2.imread(img)
|
@@ -54,11 +74,11 @@ def undo_points(orig_img, sel_pix):
|
|
54 |
return temp, sel_pix
|
55 |
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
63 |
colors = [(255, 0, 0), (0, 255, 0)]
|
64 |
markers = [1, 5]
|
@@ -89,12 +109,6 @@ def load_additional_params(model_name):
|
|
89 |
return additional_params
|
90 |
|
91 |
def process_image_check(path_input, prompt, sel_points, semantic):
|
92 |
-
print('=========== PROCESS IMAGE CHECK ===========')
|
93 |
-
print(f"Image Path: {path_input}")
|
94 |
-
print(f"Prompt: {prompt}")
|
95 |
-
print(f"Selected Points (before processing): {sel_points}")
|
96 |
-
print(f"Semantic Input: {semantic}")
|
97 |
-
print('===========================================')
|
98 |
if path_input is None:
|
99 |
raise gr.Error(
|
100 |
"Missing image in the left pane: please upload an image first."
|
@@ -103,23 +117,6 @@ def process_image_check(path_input, prompt, sel_points, semantic):
|
|
103 |
raise gr.Error(
|
104 |
"At least 1 prediction type is needed."
|
105 |
)
|
106 |
-
if 'point segmentation' in prompt and len(sel_points) == 0:
|
107 |
-
raise gr.Error(
|
108 |
-
"At least 1 point is needed."
|
109 |
-
)
|
110 |
-
if 'point segmentation' not in prompt and len(sel_points) != 0:
|
111 |
-
raise gr.Error(
|
112 |
-
"You must select 'point segmentation' when performing point segmentation."
|
113 |
-
)
|
114 |
-
|
115 |
-
if 'semantic segmentation' in prompt and semantic == None:
|
116 |
-
raise gr.Error(
|
117 |
-
"Target category is needed."
|
118 |
-
)
|
119 |
-
if 'semantic segmentation' not in prompt and semantic != None:
|
120 |
-
raise gr.Error(
|
121 |
-
"You must select 'semantic segmentation' when performing semantic segmentation."
|
122 |
-
)
|
123 |
|
124 |
|
125 |
|
@@ -146,14 +143,51 @@ def process_image_4(image_path, prompt):
|
|
146 |
|
147 |
|
148 |
def inf(image_path, prompt, sel_points, semantic):
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
# return None
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
api_name="/inf"
|
155 |
)
|
156 |
|
|
|
|
|
|
|
157 |
def clear_cache():
|
158 |
return None, None
|
159 |
|
@@ -162,18 +196,76 @@ def run_demo_server():
|
|
162 |
gradio_theme = gr.themes.Default()
|
163 |
with gr.Blocks(
|
164 |
theme=gradio_theme,
|
165 |
-
title="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
) as demo:
|
167 |
selected_points = gr.State([]) # store points
|
168 |
original_image = gr.State(value=None) # store original image without points, default None
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
with gr.Row():
|
174 |
checkbox_group = gr.CheckboxGroup(choices=options, label="Select options:")
|
175 |
with gr.Row():
|
176 |
semantic_input = gr.Textbox(label="Category Name (for semantic segmentation only, in COCO)", placeholder="e.g. person/cat/dog/elephant......")
|
|
|
|
|
177 |
with gr.Row():
|
178 |
with gr.Column():
|
179 |
input_image = gr.Image(
|
@@ -184,20 +276,22 @@ def run_demo_server():
|
|
184 |
with gr.Column():
|
185 |
with gr.Row():
|
186 |
gr.Markdown('You can click on the image to select points prompt. At most 5 point.')
|
187 |
-
undo_button = gr.Button('Undo point')
|
188 |
|
189 |
-
with gr.Row():
|
190 |
matting_image_submit_btn = gr.Button(
|
191 |
-
value="
|
192 |
)
|
|
|
|
|
|
|
193 |
matting_image_reset_btn = gr.Button(value="Reset")
|
194 |
|
195 |
-
with gr.Row():
|
196 |
-
|
197 |
|
198 |
with gr.Column():
|
199 |
# matting_image_output = gr.Image(label='Output')
|
200 |
-
matting_image_output = gr.Image(label='
|
|
|
201 |
|
202 |
# label="Matting Output",
|
203 |
# type="filepath",
|
@@ -210,7 +304,7 @@ def run_demo_server():
|
|
210 |
|
211 |
|
212 |
|
213 |
-
img_clear_button.click(clear_cache, outputs=[input_image, matting_image_output])
|
214 |
|
215 |
matting_image_submit_btn.click(
|
216 |
fn=process_image_check,
|
@@ -230,11 +324,13 @@ def run_demo_server():
|
|
230 |
fn=lambda: (
|
231 |
None,
|
232 |
None,
|
|
|
233 |
),
|
234 |
inputs=[],
|
235 |
outputs=[
|
236 |
input_image,
|
237 |
matting_image_output,
|
|
|
238 |
],
|
239 |
queue=False,
|
240 |
)
|
|
|
20 |
self.create()
|
21 |
|
22 |
|
23 |
+
def postprocess(output, prompt):
|
24 |
+
result = []
|
25 |
+
image = Image.open(output)
|
26 |
+
w, h = image.size
|
27 |
+
n = len(prompt)
|
28 |
+
slice_width = w // n
|
29 |
+
|
30 |
+
for i in range(n):
|
31 |
+
left = i * slice_width
|
32 |
+
right = (i + 1) * slice_width if i < n - 1 else w
|
33 |
+
cropped_img = image.crop((left, 0, right, h))
|
34 |
+
|
35 |
+
# 生成 caption
|
36 |
+
caption = prompt[i]
|
37 |
+
|
38 |
+
# 存入列表
|
39 |
+
result.append((cropped_img, caption))
|
40 |
+
return result
|
41 |
+
|
42 |
# user click the image to get points, and show the points on the image
|
43 |
def get_point(img, sel_pix, evt: gr.SelectData):
|
44 |
+
print(sel_pix)
|
45 |
if len(sel_pix) < 5:
|
46 |
sel_pix.append((evt.index, 1)) # default foreground_point
|
47 |
img = cv2.imread(img)
|
|
|
74 |
return temp, sel_pix
|
75 |
|
76 |
|
77 |
+
HF_TOKEN = os.environ.get('HF_KEY')
|
78 |
|
79 |
+
client = Client("Canyu/Diception",
|
80 |
+
max_workers=3,
|
81 |
+
hf_token=HF_TOKEN)
|
82 |
|
83 |
colors = [(255, 0, 0), (0, 255, 0)]
|
84 |
markers = [1, 5]
|
|
|
109 |
return additional_params
|
110 |
|
111 |
def process_image_check(path_input, prompt, sel_points, semantic):
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
if path_input is None:
|
113 |
raise gr.Error(
|
114 |
"Missing image in the left pane: please upload an image first."
|
|
|
117 |
raise gr.Error(
|
118 |
"At least 1 prediction type is needed."
|
119 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
|
122 |
|
|
|
143 |
|
144 |
|
145 |
def inf(image_path, prompt, sel_points, semantic):
|
146 |
+
print('=========== PROCESS IMAGE CHECK ===========')
|
147 |
+
print(f"Image Path: {image_path}")
|
148 |
+
print(f"Prompt: {prompt}")
|
149 |
+
print(f"Selected Points (before processing): {sel_points}")
|
150 |
+
print(f"Semantic Input: {semantic}")
|
151 |
+
print('===========================================')
|
152 |
+
|
153 |
+
if 'point segmentation' in prompt and len(sel_points) == 0:
|
154 |
+
raise gr.Error(
|
155 |
+
"At least 1 point is needed."
|
156 |
+
)
|
157 |
+
return
|
158 |
+
if 'point segmentation' not in prompt and len(sel_points) != 0:
|
159 |
+
raise gr.Error(
|
160 |
+
"You must select 'point segmentation' when performing point segmentation."
|
161 |
+
)
|
162 |
+
return
|
163 |
+
|
164 |
+
if 'semantic segmentation' in prompt and semantic == '':
|
165 |
+
raise gr.Error(
|
166 |
+
"Target category is needed."
|
167 |
+
)
|
168 |
+
return
|
169 |
+
if 'semantic segmentation' not in prompt and semantic != '':
|
170 |
+
raise gr.Error(
|
171 |
+
"You must select 'semantic segmentation' when performing semantic segmentation."
|
172 |
+
)
|
173 |
+
return
|
174 |
+
|
175 |
# return None
|
176 |
+
# inputs = process_image_4(image_path, prompt, sel_points, semantic)
|
177 |
+
|
178 |
+
prompt_str = str(sel_points)
|
179 |
+
|
180 |
+
result = client.predict(
|
181 |
+
input_image=handle_file(image_path),
|
182 |
+
checkbox_group=prompt,
|
183 |
+
selected_points=prompt_str,
|
184 |
+
semantic_input=semantic,
|
185 |
api_name="/inf"
|
186 |
)
|
187 |
|
188 |
+
result = postprocess(result, prompt)
|
189 |
+
return result
|
190 |
+
|
191 |
def clear_cache():
|
192 |
return None, None
|
193 |
|
|
|
196 |
gradio_theme = gr.themes.Default()
|
197 |
with gr.Blocks(
|
198 |
theme=gradio_theme,
|
199 |
+
title="Diception",
|
200 |
+
css="""
|
201 |
+
#download {
|
202 |
+
height: 118px;
|
203 |
+
}
|
204 |
+
.slider .inner {
|
205 |
+
width: 5px;
|
206 |
+
background: #FFF;
|
207 |
+
}
|
208 |
+
.viewport {
|
209 |
+
aspect-ratio: 4/3;
|
210 |
+
}
|
211 |
+
.tabs button.selected {
|
212 |
+
font-size: 20px !important;
|
213 |
+
color: crimson !important;
|
214 |
+
}
|
215 |
+
h1 {
|
216 |
+
text-align: center;
|
217 |
+
display: block;
|
218 |
+
}
|
219 |
+
h2 {
|
220 |
+
text-align: center;
|
221 |
+
display: block;
|
222 |
+
}
|
223 |
+
h3 {
|
224 |
+
text-align: center;
|
225 |
+
display: block;
|
226 |
+
}
|
227 |
+
.md_feedback li {
|
228 |
+
margin-bottom: 0px !important;
|
229 |
+
}
|
230 |
+
""",
|
231 |
+
head="""
|
232 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
233 |
+
<script>
|
234 |
+
window.dataLayer = window.dataLayer || [];
|
235 |
+
function gtag() {dataLayer.push(arguments);}
|
236 |
+
gtag('js', new Date());
|
237 |
+
gtag('config', 'G-1FWSVCGZTG');
|
238 |
+
</script>
|
239 |
+
""",
|
240 |
) as demo:
|
241 |
selected_points = gr.State([]) # store points
|
242 |
original_image = gr.State(value=None) # store original image without points, default None
|
243 |
+
gr.Markdown(
|
244 |
+
"""
|
245 |
+
# DICEPTION: A Generalist Diffusion Model for Vision Perception
|
246 |
+
<p align="center">
|
247 |
+
<a title="arXiv" href="https://arxiv.org" target="_blank" rel="noopener noreferrer"
|
248 |
+
style="display: inline-block;">
|
249 |
+
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
250 |
+
</a>
|
251 |
+
<a title="Github" href="https://github.com/aim-uofa/Diception" target="_blank" rel="noopener noreferrer"
|
252 |
+
style="display: inline-block;">
|
253 |
+
<img src="https://img.shields.io/github/stars/aim-uofa/GenPercept?label=GitHub%20%E2%98%85&logo=github&color=C8C"
|
254 |
+
alt="badge-github-stars">
|
255 |
+
</a>
|
256 |
+
</p>
|
257 |
+
<p align="justify">
|
258 |
+
One single model solves multiple perception tasks, producing impressive results!
|
259 |
+
</p>
|
260 |
+
"""
|
261 |
+
)
|
262 |
+
|
263 |
with gr.Row():
|
264 |
checkbox_group = gr.CheckboxGroup(choices=options, label="Select options:")
|
265 |
with gr.Row():
|
266 |
semantic_input = gr.Textbox(label="Category Name (for semantic segmentation only, in COCO)", placeholder="e.g. person/cat/dog/elephant......")
|
267 |
+
with gr.Row():
|
268 |
+
gr.Markdown('For non-human image inputs, the pose results may have issues. Same when perform semantic segmentation with categories that are not in COCO.')
|
269 |
with gr.Row():
|
270 |
with gr.Column():
|
271 |
input_image = gr.Image(
|
|
|
276 |
with gr.Column():
|
277 |
with gr.Row():
|
278 |
gr.Markdown('You can click on the image to select points prompt. At most 5 point.')
|
|
|
279 |
|
|
|
280 |
matting_image_submit_btn = gr.Button(
|
281 |
+
value="Run", variant="primary"
|
282 |
)
|
283 |
+
|
284 |
+
with gr.Row():
|
285 |
+
undo_button = gr.Button('Undo point')
|
286 |
matting_image_reset_btn = gr.Button(value="Reset")
|
287 |
|
288 |
+
# with gr.Row():
|
289 |
+
# img_clear_button = gr.Button("Clear Cache")
|
290 |
|
291 |
with gr.Column():
|
292 |
# matting_image_output = gr.Image(label='Output')
|
293 |
+
# matting_image_output = gr.Image(label='Results')
|
294 |
+
matting_image_output = gr.Gallery(label="Results")
|
295 |
|
296 |
# label="Matting Output",
|
297 |
# type="filepath",
|
|
|
304 |
|
305 |
|
306 |
|
307 |
+
# img_clear_button.click(clear_cache, outputs=[input_image, matting_image_output])
|
308 |
|
309 |
matting_image_submit_btn.click(
|
310 |
fn=process_image_check,
|
|
|
324 |
fn=lambda: (
|
325 |
None,
|
326 |
None,
|
327 |
+
[]
|
328 |
),
|
329 |
inputs=[],
|
330 |
outputs=[
|
331 |
input_image,
|
332 |
matting_image_output,
|
333 |
+
selected_points
|
334 |
],
|
335 |
queue=False,
|
336 |
)
|