wav2vec2-base-finetuned-sentiment-mesd

This model is a fine-tuned version of facebook/wav2vec2-base on the MESD dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5729
  • Accuracy: 0.8308

Model description

This model was trained to classify underlying sentiment of Spanish audio/speech.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.25e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 7 0.5729 0.8308
No log 2.0 14 0.6577 0.8
0.1602 3.0 21 0.7055 0.8
0.1602 4.0 28 0.8696 0.7615
0.1602 5.0 35 0.6807 0.7923
0.1711 6.0 42 0.7303 0.7923
0.1711 7.0 49 0.7028 0.8077
0.1711 8.0 56 0.7368 0.8
0.1608 9.0 63 0.7190 0.7923
0.1608 10.0 70 0.6913 0.8077
0.1608 11.0 77 0.7047 0.8077
0.1753 12.0 84 0.6801 0.8
0.1753 13.0 91 0.7208 0.7769
0.1753 14.0 98 0.7458 0.7846
0.203 15.0 105 0.6494 0.8077
0.203 16.0 112 0.6256 0.8231
0.203 17.0 119 0.6788 0.8
0.1919 18.0 126 0.6757 0.7846
0.1919 19.0 133 0.6859 0.7846
0.1641 20.0 140 0.6832 0.7846

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.10.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for somosnlp-hackathon-2022/wav2vec2-base-finetuned-sentiment-mesd

Finetuned
(700)
this model

Space using somosnlp-hackathon-2022/wav2vec2-base-finetuned-sentiment-mesd 1