Uploaded model
- Developed by: shiki07
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
how to use
本アダプタを用いて,ELYZA-tasks-100-TVの出力を得る推論コードです.Jupyter Notebook環境を想定しています.
使用ライブラリのインストール
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
準備
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
HF_TOKEN = "Hugging Face Token" #Write権限のHFトークンを設定
base_model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "shiki07/llm-jp-3-13b-it_lora"
eval_data_path = "./elyza-tasks-100-TV_0.jsonl" # elyza-tasks-100-TVのパスを指定
時間がかかります.
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, token = HF_TOKEN)
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
データ読み込みと推論
# データセットの読み込み。
datasets = []
with open(eval_data_path, "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# llmjp
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
import re
jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
以上です.
.jsonlファイルが推論結果のファイルになります.
Instruction tuning
The models have been fine-tuned on the following datasets.
日本語インストラクションデータ:ichikara-instruction
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for shiki07/llm-jp-3-13b-it_lora
Base model
llm-jp/llm-jp-3-13b