aoi_clip_high_resolution_concate_fusin
This model is a fine-tuned version of OFA-Sys/chinese-clip-vit-base-patch16 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.6300
- Accuracy: 0.0309
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 40
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.4434 | 5.9923 | 1866 | 3.7035 | 0.0316 |
2.2689 | 11.9846 | 3732 | 3.9282 | 0.0312 |
2.1311 | 17.9769 | 5598 | 4.1890 | 0.0324 |
2.0473 | 23.9692 | 7464 | 4.2218 | 0.0317 |
2.0065 | 29.9615 | 9330 | 4.1968 | 0.0317 |
1.9816 | 35.9538 | 11196 | 4.3277 | 0.0311 |
1.9593 | 41.9461 | 13062 | 4.4400 | 0.0312 |
1.9448 | 47.9383 | 14928 | 4.4896 | 0.0311 |
1.9352 | 53.9306 | 16794 | 4.5710 | 0.0311 |
1.9342 | 59.9229 | 18660 | 4.6300 | 0.0310 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 33
Model tree for sharkMeow/aoi_clip_high_resolution_concate_fusin
Base model
OFA-Sys/chinese-clip-vit-base-patch16