whisper-small-hindi-transcribe
This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3134
- Wer: 21.0323
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1415 | 1.8473 | 750 | 0.1538 | 22.5756 |
0.0787 | 3.6946 | 1500 | 0.1400 | 20.1356 |
0.039 | 5.5419 | 2250 | 0.1561 | 20.1668 |
0.0163 | 7.3892 | 3000 | 0.1859 | 20.6361 |
0.0057 | 9.2365 | 3750 | 0.2193 | 21.0532 |
0.0018 | 11.0837 | 4500 | 0.2519 | 20.9906 |
0.0011 | 12.9310 | 5250 | 0.2728 | 21.1470 |
0.0006 | 14.7783 | 6000 | 0.2896 | 21.3139 |
0.0002 | 16.6256 | 6750 | 0.3043 | 21.0636 |
0.0002 | 18.4729 | 7500 | 0.3134 | 21.0323 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 30
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for shadabsayd/whisper-small-hindi-transcribe
Base model
openai/whisper-small