BantuBERTa-vmw-finetuned-vmw-MICRO
This model is a fine-tuned version of Kuongan/BantuBERTa-vmw-finetuned on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1136
- F1: 0.7477
- Roc Auc: 0.8125
- Accuracy: 0.8066
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.1384 | 1.0 | 146 | 0.1136 | 0.7477 | 0.8125 | 0.8066 |
0.1126 | 2.0 | 292 | 0.1165 | 0.7467 | 0.8308 | 0.7969 |
0.0935 | 3.0 | 438 | 0.1130 | 0.7442 | 0.8389 | 0.7969 |
0.0745 | 4.0 | 584 | 0.1202 | 0.7394 | 0.8501 | 0.7834 |
0.06 | 5.0 | 730 | 0.1250 | 0.7210 | 0.8379 | 0.7660 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 25
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.