We tried to use the huggingface transformers library to recreate the TinyStories models on Consumer GPU using GPT2 Architecture instead of GPT-Neo Architecture orignally used in the paper (https://arxiv.org/abs/2305.07759). Output model is 15mb and has 3 million parameters.

------ EXAMPLE USAGE 1 ---

from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("segestic/Tinystories-gpt-0.1-3m")

model = AutoModelForCausalLM.from_pretrained("segestic/Tinystories-gpt-0.1-3m")

prompt = "Once upon a time there was"

input_ids = tokenizer.encode(prompt, return_tensors="pt")

Generate completion

output = model.generate(input_ids, max_length = 1000, num_beams=1)

Decode the completion

output_text = tokenizer.decode(output[0], skip_special_tokens=True)

Print the generated text

print(output_text)

------ EXAMPLE USAGE 2 ------

Use a pipeline as a high-level helper

from transformers import pipeline

pipeline

pipe = pipeline("text-generation", model="segestic/Tinystories-gpt-0.1-3m")

prompt

prompt = "where is the little girl"

generate completion

output = pipe(prompt, max_length=1000, num_beams=1)

decode the completion

generated_text = output[0]['generated_text']

Print the generated text

print(generated_text)

Downloads last month
232
Safetensors
Model size
3.75M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for segestic/Tinystories-gpt-0.1-3m

Quantizations
1 model

Dataset used to train segestic/Tinystories-gpt-0.1-3m