arabert_cross_relevance_task5_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1600
- Qwk: 0.0355
- Mse: 0.1600
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.1333 | 2 | 1.3976 | -0.0095 | 1.3976 |
No log | 0.2667 | 4 | 0.2802 | 0.0303 | 0.2802 |
No log | 0.4 | 6 | 0.1716 | 0.0958 | 0.1716 |
No log | 0.5333 | 8 | 0.1264 | 0.0844 | 0.1264 |
No log | 0.6667 | 10 | 0.3227 | 0.0436 | 0.3227 |
No log | 0.8 | 12 | 0.4525 | 0.0566 | 0.4525 |
No log | 0.9333 | 14 | 0.2745 | 0.0361 | 0.2745 |
No log | 1.0667 | 16 | 0.1334 | 0.0270 | 0.1334 |
No log | 1.2 | 18 | 0.1243 | 0.0270 | 0.1243 |
No log | 1.3333 | 20 | 0.1332 | 0.0338 | 0.1332 |
No log | 1.4667 | 22 | 0.1989 | 0.0254 | 0.1989 |
No log | 1.6 | 24 | 0.2524 | 0.0281 | 0.2524 |
No log | 1.7333 | 26 | 0.2192 | 0.0339 | 0.2192 |
No log | 1.8667 | 28 | 0.1883 | 0.0339 | 0.1883 |
No log | 2.0 | 30 | 0.1407 | 0.0511 | 0.1407 |
No log | 2.1333 | 32 | 0.1285 | 0.0493 | 0.1285 |
No log | 2.2667 | 34 | 0.1272 | 0.0386 | 0.1272 |
No log | 2.4 | 36 | 0.1551 | 0.0339 | 0.1551 |
No log | 2.5333 | 38 | 0.1968 | 0.0339 | 0.1968 |
No log | 2.6667 | 40 | 0.1958 | 0.0339 | 0.1958 |
No log | 2.8 | 42 | 0.1776 | 0.0339 | 0.1776 |
No log | 2.9333 | 44 | 0.1898 | 0.0339 | 0.1898 |
No log | 3.0667 | 46 | 0.1824 | 0.0339 | 0.1824 |
No log | 3.2 | 48 | 0.1597 | 0.0254 | 0.1597 |
No log | 3.3333 | 50 | 0.1434 | 0.0254 | 0.1434 |
No log | 3.4667 | 52 | 0.1327 | 0.0342 | 0.1327 |
No log | 3.6 | 54 | 0.1413 | 0.0290 | 0.1413 |
No log | 3.7333 | 56 | 0.1731 | 0.0339 | 0.1731 |
No log | 3.8667 | 58 | 0.1817 | 0.0339 | 0.1817 |
No log | 4.0 | 60 | 0.1522 | 0.0389 | 0.1522 |
No log | 4.1333 | 62 | 0.1305 | 0.0661 | 0.1305 |
No log | 4.2667 | 64 | 0.1284 | 0.0630 | 0.1284 |
No log | 4.4 | 66 | 0.1355 | 0.0393 | 0.1355 |
No log | 4.5333 | 68 | 0.1604 | 0.0339 | 0.1604 |
No log | 4.6667 | 70 | 0.2002 | 0.0339 | 0.2002 |
No log | 4.8 | 72 | 0.1955 | 0.0339 | 0.1955 |
No log | 4.9333 | 74 | 0.1658 | 0.0339 | 0.1658 |
No log | 5.0667 | 76 | 0.1489 | 0.0339 | 0.1489 |
No log | 5.2 | 78 | 0.1364 | 0.0307 | 0.1364 |
No log | 5.3333 | 80 | 0.1306 | 0.0359 | 0.1306 |
No log | 5.4667 | 82 | 0.1357 | 0.0307 | 0.1357 |
No log | 5.6 | 84 | 0.1533 | 0.0339 | 0.1533 |
No log | 5.7333 | 86 | 0.1769 | 0.0339 | 0.1769 |
No log | 5.8667 | 88 | 0.1814 | 0.0339 | 0.1814 |
No log | 6.0 | 90 | 0.1634 | 0.0273 | 0.1634 |
No log | 6.1333 | 92 | 0.1427 | 0.0273 | 0.1427 |
No log | 6.2667 | 94 | 0.1345 | 0.0324 | 0.1345 |
No log | 6.4 | 96 | 0.1360 | 0.0377 | 0.1360 |
No log | 6.5333 | 98 | 0.1445 | 0.0307 | 0.1445 |
No log | 6.6667 | 100 | 0.1592 | 0.0290 | 0.1592 |
No log | 6.8 | 102 | 0.1809 | 0.0355 | 0.1809 |
No log | 6.9333 | 104 | 0.1826 | 0.0254 | 0.1826 |
No log | 7.0667 | 106 | 0.1828 | 0.0254 | 0.1828 |
No log | 7.2 | 108 | 0.1811 | 0.0254 | 0.1811 |
No log | 7.3333 | 110 | 0.1729 | 0.0270 | 0.1729 |
No log | 7.4667 | 112 | 0.1676 | 0.0290 | 0.1676 |
No log | 7.6 | 114 | 0.1697 | 0.0273 | 0.1697 |
No log | 7.7333 | 116 | 0.1696 | 0.0254 | 0.1696 |
No log | 7.8667 | 118 | 0.1615 | 0.0254 | 0.1615 |
No log | 8.0 | 120 | 0.1570 | 0.0304 | 0.1570 |
No log | 8.1333 | 122 | 0.1567 | 0.0304 | 0.1567 |
No log | 8.2667 | 124 | 0.1631 | 0.0287 | 0.1631 |
No log | 8.4 | 126 | 0.1702 | 0.0270 | 0.1702 |
No log | 8.5333 | 128 | 0.1774 | 0.0355 | 0.1774 |
No log | 8.6667 | 130 | 0.1807 | 0.0355 | 0.1807 |
No log | 8.8 | 132 | 0.1787 | 0.0372 | 0.1787 |
No log | 8.9333 | 134 | 0.1755 | 0.0389 | 0.1755 |
No log | 9.0667 | 136 | 0.1743 | 0.0406 | 0.1743 |
No log | 9.2 | 138 | 0.1698 | 0.0406 | 0.1698 |
No log | 9.3333 | 140 | 0.1640 | 0.0423 | 0.1640 |
No log | 9.4667 | 142 | 0.1601 | 0.0441 | 0.1601 |
No log | 9.6 | 144 | 0.1589 | 0.0441 | 0.1589 |
No log | 9.7333 | 146 | 0.1591 | 0.0355 | 0.1591 |
No log | 9.8667 | 148 | 0.1596 | 0.0355 | 0.1596 |
No log | 10.0 | 150 | 0.1600 | 0.0355 | 0.1600 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for salbatarni/arabert_cross_relevance_task5_fold1
Base model
aubmindlab/bert-base-arabertv02