|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_development_task2_fold1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_development_task2_fold1 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5447 |
|
- Qwk: 0.4714 |
|
- Mse: 0.5518 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:------:| |
|
| No log | 0.3333 | 2 | 3.5280 | -0.0028 | 3.6293 | |
|
| No log | 0.6667 | 4 | 1.1366 | 0.0251 | 1.1880 | |
|
| No log | 1.0 | 6 | 0.4107 | 0.0 | 0.4259 | |
|
| No log | 1.3333 | 8 | 0.4662 | 0.1765 | 0.4494 | |
|
| No log | 1.6667 | 10 | 0.3079 | 0.2075 | 0.3114 | |
|
| No log | 2.0 | 12 | 0.2932 | 0.4101 | 0.2962 | |
|
| No log | 2.3333 | 14 | 0.3202 | 0.1525 | 0.3155 | |
|
| No log | 2.6667 | 16 | 0.4604 | 0.2410 | 0.4445 | |
|
| No log | 3.0 | 18 | 0.3972 | 0.1765 | 0.3866 | |
|
| No log | 3.3333 | 20 | 0.2887 | 0.1356 | 0.2966 | |
|
| No log | 3.6667 | 22 | 0.3203 | 0.1907 | 0.3343 | |
|
| No log | 4.0 | 24 | 0.3286 | 0.3453 | 0.3381 | |
|
| No log | 4.3333 | 26 | 0.4544 | 0.1674 | 0.4506 | |
|
| No log | 4.6667 | 28 | 0.5203 | 0.1674 | 0.5108 | |
|
| No log | 5.0 | 30 | 0.4560 | 0.4453 | 0.4535 | |
|
| No log | 5.3333 | 32 | 0.4023 | 0.4457 | 0.4083 | |
|
| No log | 5.6667 | 34 | 0.3835 | 0.3453 | 0.3956 | |
|
| No log | 6.0 | 36 | 0.4165 | 0.4231 | 0.4249 | |
|
| No log | 6.3333 | 38 | 0.5295 | 0.4152 | 0.5286 | |
|
| No log | 6.6667 | 40 | 0.6129 | 0.2759 | 0.6063 | |
|
| No log | 7.0 | 42 | 0.6169 | 0.2759 | 0.6109 | |
|
| No log | 7.3333 | 44 | 0.5387 | 0.3971 | 0.5393 | |
|
| No log | 7.6667 | 46 | 0.4830 | 0.3913 | 0.4895 | |
|
| No log | 8.0 | 48 | 0.4890 | 0.3695 | 0.4962 | |
|
| No log | 8.3333 | 50 | 0.5286 | 0.4714 | 0.5334 | |
|
| No log | 8.6667 | 52 | 0.5656 | 0.3971 | 0.5690 | |
|
| No log | 9.0 | 54 | 0.5673 | 0.4714 | 0.5716 | |
|
| No log | 9.3333 | 56 | 0.5533 | 0.4714 | 0.5593 | |
|
| No log | 9.6667 | 58 | 0.5477 | 0.4714 | 0.5545 | |
|
| No log | 10.0 | 60 | 0.5447 | 0.4714 | 0.5518 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|