qwdf8591's picture
End of training
ab9e415 verified
|
raw
history blame
1.92 kB
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: roberta-base_auditor_sentiment
    results: []

roberta-base_auditor_sentiment

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5356
  • Accuracy: 0.8554
  • Precision: 0.8224
  • Recall: 0.8722
  • F1: 0.8414

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4217 1.0 485 0.6358 0.8223 0.8142 0.8135 0.8134
0.6538 2.0 970 0.6491 0.8388 0.8584 0.8025 0.8192
0.3961 3.0 1455 0.5356 0.8554 0.8224 0.8722 0.8414
0.1121 4.0 1940 0.7393 0.8512 0.8414 0.8477 0.8428
0.0192 5.0 2425 0.7233 0.8698 0.8581 0.8743 0.8657

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1