This model has been referred to the following link : https://github.com/Huffon/klue-transformers-tutorial.git

ํ•ด๋‹น ๋ชจ๋ธ์€ ์œ„ ๊นƒํ—ˆ๋ธŒ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ klue/roberta-base ๋ชจ๋ธ์„ kor_nli ์˜ mnli, xnli๋กœ ํŒŒ์ธํŠœ๋‹ํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

train_loss val_loss acc epoch batch lr
0.326 0.538 0.811 3 32 2e-5

RoBERTa์™€ ๊ฐ™์ด token_type_ids๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ, zero-shot pipeline์„ ๋ฐ”๋กœ ์ ์šฉํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค(transformers==4.7.0 ๊ธฐ์ค€)
๋”ฐ๋ผ์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ณ€ํ™˜ํ•˜๋Š” ์ฝ”๋“œ๋ฅผ ๋„ฃ์–ด์ค˜์•ผ ํ•ฉ๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฝ”๋“œ ๋˜ํ•œ ์œ„ ๊นƒํ—ˆ๋ธŒ์˜ ์ฝ”๋“œ๋ฅผ ์ˆ˜์ •ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

class ArgumentHandler(ABC):
    """
    Base interface for handling arguments for each :class:`~transformers.pipelines.Pipeline`.
    """

    @abstractmethod
    def __call__(self, *args, **kwargs):
        raise NotImplementedError()


class CustomZeroShotClassificationArgumentHandler(ArgumentHandler):
    """
    Handles arguments for zero-shot for text classification by turning each possible label into an NLI
    premise/hypothesis pair.
    """

    def _parse_labels(self, labels):
        if isinstance(labels, str):
            labels = [label.strip() for label in labels.split(",")]
        return labels

    def __call__(self, sequences, labels, hypothesis_template):
        if len(labels) == 0 or len(sequences) == 0:
            raise ValueError("You must include at least one label and at least one sequence.")
        if hypothesis_template.format(labels[0]) == hypothesis_template:
            raise ValueError(
                (
                    'The provided hypothesis_template "{}" was not able to be formatted with the target labels. '
                    "Make sure the passed template includes formatting syntax such as {{}} where the label should go."
                ).format(hypothesis_template)
            )

        if isinstance(sequences, str):
            sequences = [sequences]
        labels = self._parse_labels(labels)

        sequence_pairs = []
        for label in labels:
            # ์ˆ˜์ •๋ถ€: ๋‘ ๋ฌธ์žฅ์„ ํŽ˜์–ด๋กœ ์ž…๋ ฅํ–ˆ์„ ๋•Œ, `token_type_ids`๊ฐ€ ์ž๋™์œผ๋กœ ๋ถ™๋Š” ๋ฌธ์ œ๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋ฏธ๋ฆฌ ๋‘ ๋ฌธ์žฅ์„ `sep_token` ๊ธฐ์ค€์œผ๋กœ ์ด์–ด์ฃผ๋„๋ก ํ•จ
            sequence_pairs.append(f"{sequences} {tokenizer.sep_token} {hypothesis_template.format(label)}")

        return sequence_pairs, sequences

์ดํ›„ classifier๋ฅผ ์ •์˜ํ•  ๋•Œ ์ด๋ฅผ ์ ์šฉํ•ด์•ผ ๋ฉ๋‹ˆ๋‹ค.

classifier = pipeline(
    "zero-shot-classification",
    args_parser=CustomZeroShotClassificationArgumentHandler(),
    model="pongjin/roberta_with_kornli"
)

results

sequence = "๋ฐฐ๋‹น๋ฝ D-1 ์ฝ”์Šคํ”ผ, 2330์„  ์ƒ์Šน์„ธ...์™ธ์ธยท๊ธฐ๊ด€ ์‚ฌ์ž"	
candidate_labels =["์™ธํ™˜",'ํ™˜์œจ', "๊ฒฝ์ œ", "๊ธˆ์œต", "๋ถ€๋™์‚ฐ","์ฃผ์‹"]

classifier(
    sequence,
    candidate_labels,
    hypothesis_template='์ด๋Š” {}์— ๊ด€ํ•œ ๊ฒƒ์ด๋‹ค.',
)

>>{'sequence': '๋ฐฐ๋‹น๋ฝ D-1 ์ฝ”์Šคํ”ผ, 2330์„  ์ƒ์Šน์„ธ...์™ธ์ธยท๊ธฐ๊ด€ ์‚ฌ์ž',
 'labels': ['์ฃผ์‹', '๊ธˆ์œต', '๊ฒฝ์ œ', '์™ธํ™˜', 'ํ™˜์œจ', '๋ถ€๋™์‚ฐ'],
 'scores': [0.5052872896194458,
  0.17972524464130402,
  0.13852974772453308,
  0.09460823982954025,
  0.042949128895998,
  0.038900360465049744]}
Downloads last month
1,276
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train pongjin/roberta_with_kornli