UCSF-JHU Opioid Industry Documents Archive

university

AI & ML interests

None defined yet.

Recent Activity

opioidarchive's activity

davanstrienΒ 
posted an update about 5 hours ago
view post
Post
343
🌍 Big step for multilingual AI data!

The Hugging Face community has rated educational content in languages spoken by 1.6 billion people! New additions:
β€’ Japanese
β€’ Italian
β€’ Old High German

Learn more and contribute: https://huggingface.co/blog/davanstrien/fineweb2-community

These ratings can help enhance training data for major world languages.
davanstrienΒ 
posted an update 14 days ago
view post
Post
3024
Introducing scandi-fine-web-cleaner davanstrien/scandi-fine-web-cleaner, the first model trained on FineWeb-C community annotations!

FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?

Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.

Today, I'm happy to share the first classifier trained on this data.

πŸ” What we've built:

- A lightweight classifier that efficiently removes low-quality content
- 90%+ precision demonstrated on Danish & Swedish
- Can process the 43M+ documents in Danish FineWeb2 with minimal compute

🌍 Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C ( data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.

Want to build a classifier for your language? Check out the full blog post with code examples and implementation details: https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html
  • 1 reply
Β·
davanstrienΒ 
posted an update 17 days ago
view post
Post
2199
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co/blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
Β·
davanstrienΒ 
posted an update about 1 month ago
view post
Post
3190
πŸ‡ΈπŸ‡° Hovorte po slovensky? Help build better AI for Slovak!

We only need 90 more annotations to include Slovak in the next Hugging Face FineWeb2-C dataset ( data-is-better-together/fineweb-c) release!

Your contribution will help create better language models for 5+ million Slovak speakers.

Annotate here: data-is-better-together/fineweb-c.

Read more about why we're doing it: https://huggingface.co/blog/davanstrien/fineweb2-community
  • 3 replies
Β·
davanstrienΒ 
posted an update about 1 month ago
view post
Post
1787
Introducing FineWeb-C πŸŒπŸŽ“, a community-built dataset for improving language models in ALL languages.

Inspired by FineWeb-Edu the community is labelling the educational quality of texts for many languages.

318 annotators, 32K+ annotations, 12 languages - and growing! 🌍

data-is-better-together/fineweb-c
dvilasueroΒ 
posted an update about 2 months ago
view post
Post
2335
🌐 Announcing Global-MMLU: an improved MMLU Open dataset with evaluation coverage across 42 languages, built with Argilla and the Hugging Face community.

Global-MMLU is the result of months of work with the goal of advancing Multilingual LLM evaluation. It's been an amazing open science effort with collaborators from Cohere For AI, Mila - Quebec Artificial Intelligence Institute, EPFL, Massachusetts Institute of Technology, AI Singapore, National University of Singapore, KAIST, Instituto Superior TΓ©cnico, Carnegie Mellon University, CONICET, and University of Buenos Aires.

🏷️ +200 contributors used Argilla MMLU questions where regional, dialect, or cultural knowledge was required to answer correctly. 85% of the questions required Western-centric knowledge!

Thanks to this annotation process, the open dataset contains two subsets:

1. πŸ—½ Culturally Agnostic: no specific regional, cultural knowledge is required.
2. βš–οΈ Culturally Sensitive: requires dialect, cultural knowledge or geographic knowledge to answer correctly.

Moreover, we provide high quality translations of 25 out of 42 languages, thanks again to the community and professional annotators leveraging Argilla on the Hub.

I hope this will ensure a better understanding of the limitations and challenges for making open AI useful for many languages.

Dataset: CohereForAI/Global-MMLU
davanstrienΒ 
posted an update about 2 months ago
view post
Post
518
Increasingly, LLMs are becoming very useful for helping scale annotation tasks, i.e. labelling and filtering. When combined with the structured generation, this can be a very scalable way of doing some pre-annotation without requiring a large team of human annotators.

However, there are quite a few cases where it still doesn't work well. This is a nice paper looking at the limitations of LLM as an annotator for Low Resource Languages: On Limitations of LLM as Annotator for Low Resource Languages (2411.17637).

Humans will still have an important role in the loop to help improve models for all languages (and domains).
davanstrienΒ 
posted an update 2 months ago
view post
Post
2495
First dataset for the new Hugging Face Bluesky community organisation: https://huggingface.co/datasets/bluesky-community/one-million-bluesky-posts πŸ¦‹

πŸ“Š 1M public posts from Bluesky's firehose API
πŸ” Includes text, metadata, and language predictions
πŸ”¬ Perfect to experiment with using ML for Bluesky πŸ€—

Excited to see people build more open tools for a more open social media platform!
davanstrienΒ 
posted an update 2 months ago
view post
Post
1360
The Bluesky AT Protocol unlocks exciting possibilities:
- Building custom feeds using ML
- Creating dashboards for data exploration
- Developing custom models for Bluesky
To gather Bluesky resources on the Hub, I've created a community org: https://huggingface.co/bluesky-community

My first rather modest contribution is a dashboard that shows the number of posts every second. Drinking straight from the firehose API 🚰

bluesky-community/bluesky-posts-over-time
  • 1 reply
Β·
davanstrienΒ 
posted an update 2 months ago
dvilasueroΒ 
posted an update 2 months ago
dvilasueroΒ 
posted an update 3 months ago
view post
Post
687
Build datasets for AI on the Hugging Face Hubβ€”10x easier than ever!

Today, I'm excited to share our biggest feature since we joined Hugging Face.

Here’s how it works:

1. Pick a datasetβ€”upload your own or choose from 240K open datasets.
2. Paste the Hub dataset ID into Argilla and set up your labeling interface.
3. Share the URL with your team or the whole community!

And the best part? It’s:
- No code – no Python needed
- Integrated – all within the Hub
- Scalable – from solo labeling to 100s of contributors

I am incredibly proud of the team for shipping this after weeks of work and many quick iterations.

Let's make this sentence obsolete: "Everyone wants to do the model work, not the data work."


Read, share, and like the HF blog post:
https://huggingface.co/blog/argilla-ui-hub
davanstrienΒ 
updated a Space 3 months ago
davanstrienΒ 
posted an update 3 months ago