numan98's picture
End of training
7e0a060 verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: tarteel-ai/whisper-tiny-ar-quran
tags:
  - generated_from_trainer
datasets:
  - numan98/synth-incorrect-verses
metrics:
  - wer
model-index:
  - name: Nextayah Tiny Whisper Finetuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Synthetic Incorrect Verses
          type: numan98/synth-incorrect-verses
          config: default
          split: None
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 22.098421541318476

Nextayah Tiny Whisper Finetuned

This model is a fine-tuned version of tarteel-ai/whisper-tiny-ar-quran on the Synthetic Incorrect Verses dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1079
  • Wer: 22.0984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0666 8.7788 500 0.1351 27.3909
0.0073 17.5487 1000 0.1090 23.3983
0.0029 26.3186 1500 0.1079 22.0984

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0