Mistral-7B-Instruct-v0.2-multilingual-deita-10k-v0-sft-v0.1

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the nthakur/multilingual-deita-10k-v0-sft-v0.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6604

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.8266 0.2861 200 0.6874
0.7478 0.5722 400 0.6693
0.7963 0.8584 600 0.6609

Framework versions

  • PEFT 0.7.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for nthakur/Mistral-7B-Instruct-v0.2-multilingual-deita-10k-v0-sft-v0.1

Adapter
(893)
this model

Dataset used to train nthakur/Mistral-7B-Instruct-v0.2-multilingual-deita-10k-v0-sft-v0.1