Qwen2-VL-72B-Instruct-quantized-w4a16

Model Overview

  • Model Architecture: Qwen/Qwen2-VL-72B-Instruct
    • Input: Vision-Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: INT4
    • Activation quantization: FP16
  • Release Date: 2/24/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of Qwen/Qwen2-VL-72B-Instruct.

Model Optimizations

This model was obtained by quantizing the weights of Qwen/Qwen2-VL-72B-Instruct to INT8 data type, ready for inference with vLLM >= 0.5.2.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams

# prepare model
llm = LLM(
    model="neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16",
    trust_remote_code=True,
    max_model_len=4096,
    max_num_seqs=2,
)

# prepare inputs
question = "What is the content of this image?"
inputs = {
    "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
    "multi_modal_data": {
        "image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
    },
}

# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below as part a multimodal announcement blog.

Model Creation Code
import base64
from io import BytesIO
import torch
from datasets import load_dataset
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import TraceableQwen2VLForConditionalGeneration
from llmcompressor.transformers.utils.data_collator import qwen2_vl_data_collator
from compressed_tensors.quantization import QuantizationArgs, QuantizationType, QuantizationStrategy, ActivationOrdering, QuantizationScheme

# Load model.
model_id = "Qwen/Qwen2-VL-72B-Instruct"

model = TraceableQwen2VLForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype="auto",
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

# Oneshot arguments
DATASET_ID = "lmms-lab/flickr30k"
DATASET_SPLIT = {"calibration": "test[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42)
dampening_frac=0.01

# Apply chat template and tokenize inputs.
def preprocess_and_tokenize(example):
    # preprocess
    buffered = BytesIO()
    example["image"].save(buffered, format="PNG")
    encoded_image = base64.b64encode(buffered.getvalue())
    encoded_image_text = encoded_image.decode("utf-8")
    base64_qwen = f"data:image;base64,{encoded_image_text}"
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": base64_qwen},
                {"type": "text", "text": "What does the image show?"},
            ],
        }
    ]
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)

    # tokenize
    return processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
    )

ds = ds.map(preprocess_and_tokenize, remove_columns=ds["calibration"].column_names)

# Recipe
recipe = GPTQModifier(
    targets="Linear",
    config_groups={
        "config_group": QuantizationScheme(
            targets=["Linear"],
            weights=QuantizationArgs(
                num_bits=4,
                type=QuantizationType.INT,
                strategy=QuantizationStrategy.GROUP,
                group_size=128,
                symmetric=True,
                dynamic=False,
                actorder=ActivationOrdering.WEIGHT,
            ),
        ),
    },
    sequential_targets=["Qwen2VLDecoderLayer"],
    ignore=["lm_head", "re:visual.*"],
    update_size=NUM_CALIBRATION_SAMPLES,
    dampening_frac=dampening_frac
)

SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w4a16

# Perform oneshot
oneshot(
    model=model,
    tokenizer=model_id,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    trust_remote_code_model=True,
    data_collator=qwen2_vl_data_collator,
    output_dir=SAVE_DIR
)

Evaluation

The model was evaluated using mistral-evals for vision-related tasks and using lm_evaluation_harness for select text-based benchmarks. The evaluations were conducted using the following commands:

Evaluation Commands

Vision Tasks

  • vqav2
  • docvqa
  • mathvista
  • mmmu
  • chartqa
vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7

python -m eval.run eval_vllm \
        --model_name neuralmagic/pixtral-12b-quantized.w8a8 \
        --url http://0.0.0.0:8000 \
        --output_dir ~/tmp \
        --eval_name <vision_task_name>

Text-based Tasks

MMLU

lm_eval \
  --model vllm \
  --model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks mmlu \
  --num_fewshot 5 \
  --batch_size auto \
  --output_path output_dir

MGSM

lm_eval \
  --model vllm \
  --model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \
  --tasks mgsm_cot_native \
  --num_fewshot 0 \
  --batch_size auto \
  --output_path output_dir

Accuracy

Category Metric Qwen/Qwen2-VL-72B-Instruct nm-testing/Qwen2-VL-72B-Instruct-quantized.W4A16 Recovery (%)
Vision MMMU (val, CoT)
explicit_prompt_relaxed_correctness
62.11 60.11 96.78%
VQAv2 (val)
vqa_match
82.51 82.38 99.84%
DocVQA (val)
anls
95.01 94.94 99.93%
ChartQA (test, CoT)
anywhere_in_answer_relaxed_correctness
83.40 80.72 96.78%
Mathvista (testmini, CoT)
explicit_prompt_relaxed_correctness
66.57 64.66 97.13%
Average Score 77.92 76.56 98.26
Text MGSM (CoT) 68.60 66.45 96.87%
MMLU (5-shot) 82.70 82.35 99.58%

Inference Performance

This model achieves up to xxx speedup in single-stream deployment and up to xxx speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with vLLM version 0.7.2, and GuideLLM.

Benchmarking Command ``` guidellm --model neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=,generated_tokens=,images=,width=,height= --max seconds 120 --backend aiohttp_server ```

Single-stream performance (measured with vLLM version 0.7.2)

Document Visual Question Answering
1680W x 2240H
64/128
Visual Reasoning
640W x 480H
128/128
Image Captioning
480W x 360H
0/128
Hardware Number of GPUs Model Average Cost Reduction Latency (s) QPD Latency (s)th> QPD Latency (s) QPD
A100 4 Qwen/Qwen2-VL-72B-Instruct 6.5 77 4.6 110 4.4 113
2 neuralmagic/Qwen2-VL-72B-Instruct-quantized.w8a8 1.85 7.2 139 4.9 206 4.8 211
1 neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16 3.32 10.0 202 5.0 398 4.8 419
H100 4 Qwen/Qwen2-VL-72B-Instruct 4.4 66 3.0 97 2.9 99
2 neuralmagic/Qwen2-VL-72B-Instruct-FP8-Dynamic 1.79 4.7 119 3.3 173 3.2 177
1 neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16 2.60 6.4 172 4.3 253 4.2 259

**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens

**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).

Multi-stream asynchronous performance (measured with vLLM version 0.7.2)

Document Visual Question Answering
1680W x 2240H
64/128
Visual Reasoning
640W x 480H
128/128
Image Captioning
480W x 360H
0/128
Hardware Model Average Cost Reduction Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD
A100x4 Qwen/Qwen2-VL-72B-Instruct 0.3 169 1.1 538 1.2 595
neuralmagic/Qwen2-VL-72B-Instruct-quantized.w8a8 1.84 1.2 586 4.0 2042 4.6 2270
neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16 2.73 2.4 1256 12.8 6364 16.0 8076
H100x4 Qwen/Qwen2-VL-72B-Instruct 0.5 137 1.2 356 1.3 377
neuralmagic/Qwen2-VL-72B-Instruct-FP8-Dynamic 1.70 1.6 457 4.4 1207 4.8 1296
neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16 2.35 5.2 1400 13.2 3640 14.4 3976

**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens

**QPS: Queries per second.

**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).

Downloads last month
438
Safetensors
Model size
12.5B params
Tensor type
I64
I32
BF16
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for nm-testing/Qwen2-VL-72B-Instruct-quantized.w4a16

Base model

Qwen/Qwen2-VL-72B
Quantized
(19)
this model