π KoE5
Introducing KoE5, a model with advanced retrieval abilities. It has shown remarkable performance in Korean text retrieval.
For details, visit the KURE repository
Model Versions
Model Name | Dimension | Sequence Length | Introduction |
---|---|---|---|
KURE-v1 | 1024 | 8192 | Fine-tuned BAAI/bge-m3 with Korean data via CachedGISTEmbedLoss |
KoE5 | 1024 | 512 | Fine-tuned intfloat/multilingual-e5-large with ko-triplet-v1.0 via CachedMultipleNegativesRankingLoss |
Model Description
This is the model card of a π€ transformers model that has been pushed on the Hub.
- Developed by: NLP&AI Lab
- Language(s) (NLP): Korean, English
- License: MIT
- Finetuned from model: intfloat/multilingual-e5-large
- Finetuned dataset: ko-triplet-v1.0
Example code
Install Dependencies
First install the Sentence Transformers library:
pip install -U sentence-transformers
Python code
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("nlpai-lab/KoE5")
# Run inference
sentences = [
'query: νλ²κ³Ό λ²μμ‘°μ§λ²μ μ΄λ€ λ°©μμ ν΅ν΄ κΈ°λ³ΈκΆ λ³΄μ₯ λ±μ λ€μν λ²μ λͺ¨μμ κ°λ₯νκ² νμ΄',
'passage: 4. μμ¬μ κ³Ό κ°μ λ°©ν₯ μμ μ΄ν΄λ³Έ λ°μ κ°μ΄ μ°λ¦¬ νλ²κ³Ό ο½’λ²μμ‘°μ§ λ²ο½£μ λλ²μ ꡬμ±μ λ€μννμ¬ κΈ°λ³ΈκΆ λ³΄μ₯κ³Ό λ―Όμ£Όμ£Όμ ν립μ μμ΄ λ€κ°μ μΈ λ²μ λͺ¨μμ κ°λ₯νκ² νλ κ²μ κ·Όλ³Έ κ·λ²μΌλ‘ νκ³ μλ€. λμ±μ΄ ν©μ체λ‘μμ λλ²μ μ리λ₯Ό μ±ννκ³ μλ κ² μμ κ·Έ ꡬμ±μ λ€μμ±μ μμ²νλ κ²μΌλ‘ ν΄μλλ€. μ΄μ κ°μ κ΄μ μμ λ³Ό λ νμ§ λ²μμ₯κΈ κ³ μλ²κ΄μ μ€μ¬μΌλ‘ λλ²μμ ꡬμ±νλ κ΄νμ κ°μ ν νμκ° μλ κ²μΌλ‘ 보μΈλ€.',
'passage: β‘ μ°λ°©νλ²μ¬νμλ 2001λ
1μ 24μΌ 5:3μ λ€μ견ν΄λ‘ γλ²μμ‘°μ§λ²γ μ 169μ‘° μ 2λ¬Έμ΄ νλ²μ ν©μΉλλ€λ νκ²°μ λ΄λ Έμ β 5μΈμ λ€μ μ¬νκ΄μ μμ‘κ΄κ³μΈμ μΈκ²©κΆ 보νΈ, 곡μ ν μ μ°¨μ 보μ₯κ³Ό λ°©ν΄λ°μ§ μλ λ²κ³Ό μ§μ€ λ°κ²¬ λ±μ κ·Όκ±°λ‘ νμ¬ ν
λ λΉμ 촬μμ λν μ λμ μΈ κΈμ§λ₯Ό νλ²μ ν©μΉνλ κ²μΌλ‘ 보μμ β κ·Έλ¬λ λλ¨Έμ§ 3μΈμ μ¬νκ΄μ νμ λ²μμ μμ‘μ μ°¨λ νΉλ³ν μΈκ²©κΆ 보νΈμ μ΄μ΅λ μμΌλ©°, ν
λ λΉμ 곡κ°μ£Όμλ‘ μΈν΄ λ²κ³Ό μ§μ€ λ°κ²¬μ κ³Όμ μ΄ μΈμ λ μνλ‘κ² λλ κ²μ μλλΌλ©΄μ λ°λμ견μ μ μν¨ β μλνλ©΄ νμ λ²μμ μμ‘μ μ°¨μμλ μμ‘λΉμ¬μκ° κ°μΈμ μΌλ‘ μ§μ μ¬λ¦¬μ μ°Έμν기보λ€λ λ³νΈμ¬κ° μ°Έμνλ κ²½μ°κ° λ§μΌλ©°, μ¬λ¦¬λμλ μ¬μ€λ¬Έμ κ° μλ λ²λ₯ λ¬Έμ κ° λλΆλΆμ΄κΈ° λλ¬Έμ΄λΌλ κ²μ β‘ ννΈ, μ°λ°©νλ²μ¬νμλ γμ°λ°©νλ²μ¬νμλ²γ(Bundesverfassungsgerichtsgesetz: BVerfGG) μ 17aμ‘°μ λ°λΌ μ νμ μ΄λλ§ μ¬νμ λν λ°©μ‘μ νμ©νκ³ μμ β γμ°λ°©νλ²μ¬νμλ²γ μ 17μ‘°μμ γλ²μμ‘°μ§λ²γ μ 14μ λ΄μ§ μ 16μ μ κ·μ μ μ€μ©νλλ‘ νκ³ μμ§λ§, λ
Ήμμ΄λ 촬μμ ν΅ν μ¬ν곡κ°μ κ΄λ ¨νμ¬μλ γλ²μμ‘°μ§λ²γκ³Ό λ€λ₯Έ λ΄μ©μ κ·μ νκ³ μμ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6721, 0.3897],
# [0.6721, 1.0000, 0.3740],
# [0.3897, 0.3740, 1.0000]])
Training Details
Training Data
- ko-triplet-v1.0
- Korean query-document-hard_negative data pair (open data)
- About 700000+ examples used totally
Training Procedure
- loss: Used CachedMultipleNegativesRankingLoss by sentence-transformers
- batch size: 512
- learning rate: 1e-05
- epochs: 1
Evaluation
Metrics
- Recall, Precision, NDCG, F1
Benchmark Datasets
- Ko-StrategyQA: νκ΅μ΄ ODQA multi-hop κ²μ λ°μ΄ν°μ (StrategyQA λ²μ)
- AutoRAGRetrieval: κΈμ΅, 곡곡, μλ£, λ²λ₯ , μ»€λ¨Έμ€ 5κ° λΆμΌμ λν΄, pdfλ₯Ό νμ±νμ¬ κ΅¬μ±ν νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- MIRACLRetrieval: Wikipedia κΈ°λ°μ νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- PublicHealthQA: μλ£ λ° κ³΅μ€λ³΄κ±΄ λλ©μΈμ λν νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- BelebeleRetrieval: FLORES-200 κΈ°λ°μ νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- MrTidyRetrieval: Wikipedia κΈ°λ°μ νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
- MultiLongDocRetrieval: λ€μν λλ©μΈμ νκ΅μ΄ μ₯λ¬Έ κ²μ λ°μ΄ν°μ
- XPQARetrieval: λ€μν λλ©μΈμ νκ΅μ΄ λ¬Έμ κ²μ λ°μ΄ν°μ
Results
μλλ λͺ¨λ λͺ¨λΈμ, λͺ¨λ λ²€μΉλ§ν¬ λ°μ΄ν°μ μ λν νκ· κ²°κ³Όμ λλ€. μμΈν κ²°κ³Όλ KURE Githubμμ νμΈνμ€ μ μμ΅λλ€.
Top-k 1
Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
---|---|---|---|---|
nlpai-lab/KURE-v1 | 0.52640 | 0.60551 | 0.60551 | 0.55784 |
dragonkue/BGE-m3-ko | 0.52361 | 0.60394 | 0.60394 | 0.55535 |
BAAI/bge-m3 | 0.51778 | 0.59846 | 0.59846 | 0.54998 |
Snowflake/snowflake-arctic-embed-l-v2.0 | 0.51246 | 0.59384 | 0.59384 | 0.54489 |
nlpai-lab/KoE5 | 0.50157 | 0.57790 | 0.57790 | 0.53178 |
intfloat/multilingual-e5-large | 0.50052 | 0.57727 | 0.57727 | 0.53122 |
jinaai/jina-embeddings-v3 | 0.48287 | 0.56068 | 0.56068 | 0.51361 |
BAAI/bge-multilingual-gemma2 | 0.47904 | 0.55472 | 0.55472 | 0.50916 |
intfloat/multilingual-e5-large-instruct | 0.47842 | 0.55435 | 0.55435 | 0.50826 |
intfloat/multilingual-e5-base | 0.46950 | 0.54490 | 0.54490 | 0.49947 |
intfloat/e5-mistral-7b-instruct | 0.46772 | 0.54394 | 0.54394 | 0.49781 |
Alibaba-NLP/gte-multilingual-base | 0.46469 | 0.53744 | 0.53744 | 0.49353 |
Alibaba-NLP/gte-Qwen2-7B-instruct | 0.46633 | 0.53625 | 0.53625 | 0.49429 |
openai/text-embedding-3-large | 0.44884 | 0.51688 | 0.51688 | 0.47572 |
Salesforce/SFR-Embedding-2_R | 0.43748 | 0.50815 | 0.50815 | 0.46504 |
upskyy/bge-m3-korean | 0.43125 | 0.50245 | 0.50245 | 0.45945 |
jhgan/ko-sroberta-multitask | 0.33788 | 0.38497 | 0.38497 | 0.35678 |
Top-k 3
Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
---|---|---|---|---|
nlpai-lab/KURE-v1 | 0.68678 | 0.28711 | 0.65538 | 0.39835 |
dragonkue/BGE-m3-ko | 0.67834 | 0.28385 | 0.64950 | 0.39378 |
BAAI/bge-m3 | 0.67526 | 0.28374 | 0.64556 | 0.39291 |
Snowflake/snowflake-arctic-embed-l-v2.0 | 0.67128 | 0.28193 | 0.64042 | 0.39072 |
intfloat/multilingual-e5-large | 0.65807 | 0.27777 | 0.62822 | 0.38423 |
nlpai-lab/KoE5 | 0.65174 | 0.27329 | 0.62369 | 0.37882 |
BAAI/bge-multilingual-gemma2 | 0.64415 | 0.27416 | 0.61105 | 0.37782 |
jinaai/jina-embeddings-v3 | 0.64116 | 0.27165 | 0.60954 | 0.37511 |
intfloat/multilingual-e5-large-instruct | 0.64353 | 0.27040 | 0.60790 | 0.37453 |
Alibaba-NLP/gte-multilingual-base | 0.63744 | 0.26404 | 0.59695 | 0.36764 |
Alibaba-NLP/gte-Qwen2-7B-instruct | 0.63163 | 0.25937 | 0.59237 | 0.36263 |
intfloat/multilingual-e5-base | 0.62099 | 0.26144 | 0.59179 | 0.36203 |
intfloat/e5-mistral-7b-instruct | 0.62087 | 0.26144 | 0.58917 | 0.36188 |
openai/text-embedding-3-large | 0.61035 | 0.25356 | 0.57329 | 0.35270 |
Salesforce/SFR-Embedding-2_R | 0.60001 | 0.25253 | 0.56346 | 0.34952 |
upskyy/bge-m3-korean | 0.59215 | 0.25076 | 0.55722 | 0.34623 |
jhgan/ko-sroberta-multitask | 0.46930 | 0.18994 | 0.43293 | 0.26696 |
Top-k 5
Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
---|---|---|---|---|
nlpai-lab/KURE-v1 | 0.73851 | 0.19130 | 0.67479 | 0.29903 |
dragonkue/BGE-m3-ko | 0.72517 | 0.18799 | 0.66692 | 0.29401 |
BAAI/bge-m3 | 0.72954 | 0.18975 | 0.66615 | 0.29632 |
Snowflake/snowflake-arctic-embed-l-v2.0 | 0.72962 | 0.18875 | 0.66236 | 0.29542 |
nlpai-lab/KoE5 | 0.70820 | 0.18287 | 0.64499 | 0.28628 |
intfloat/multilingual-e5-large | 0.70124 | 0.18316 | 0.64402 | 0.28588 |
BAAI/bge-multilingual-gemma2 | 0.70258 | 0.18556 | 0.63338 | 0.28851 |
jinaai/jina-embeddings-v3 | 0.69933 | 0.18256 | 0.63133 | 0.28505 |
intfloat/multilingual-e5-large-instruct | 0.69018 | 0.17838 | 0.62486 | 0.27933 |
Alibaba-NLP/gte-multilingual-base | 0.69365 | 0.17789 | 0.61896 | 0.27879 |
intfloat/multilingual-e5-base | 0.67250 | 0.17406 | 0.61119 | 0.27247 |
Alibaba-NLP/gte-Qwen2-7B-instruct | 0.67447 | 0.17114 | 0.60952 | 0.26943 |
intfloat/e5-mistral-7b-instruct | 0.67449 | 0.17484 | 0.60935 | 0.27349 |
openai/text-embedding-3-large | 0.66365 | 0.17004 | 0.59389 | 0.26677 |
Salesforce/SFR-Embedding-2_R | 0.65622 | 0.17018 | 0.58494 | 0.26612 |
upskyy/bge-m3-korean | 0.65477 | 0.17015 | 0.58073 | 0.26589 |
jhgan/ko-sroberta-multitask | 0.53136 | 0.13264 | 0.45879 | 0.20976 |
Top-k 10
Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
---|---|---|---|---|
nlpai-lab/KURE-v1 | 0.79682 | 0.10624 | 0.69473 | 0.18524 |
dragonkue/BGE-m3-ko | 0.78450 | 0.10492 | 0.68748 | 0.18288 |
BAAI/bge-m3 | 0.79195 | 0.10592 | 0.68723 | 0.18456 |
Snowflake/snowflake-arctic-embed-l-v2.0 | 0.78669 | 0.10462 | 0.68189 | 0.18260 |
intfloat/multilingual-e5-large | 0.75902 | 0.10147 | 0.66370 | 0.17693 |
nlpai-lab/KoE5 | 0.75296 | 0.09937 | 0.66012 | 0.17369 |
BAAI/bge-multilingual-gemma2 | 0.76153 | 0.10364 | 0.65330 | 0.18003 |
jinaai/jina-embeddings-v3 | 0.76277 | 0.10240 | 0.65290 | 0.17843 |
intfloat/multilingual-e5-large-instruct | 0.74851 | 0.09888 | 0.64451 | 0.17283 |
Alibaba-NLP/gte-multilingual-base | 0.75631 | 0.09938 | 0.64025 | 0.17363 |
Alibaba-NLP/gte-Qwen2-7B-instruct | 0.74092 | 0.09607 | 0.63258 | 0.16847 |
intfloat/multilingual-e5-base | 0.73512 | 0.09717 | 0.63216 | 0.16977 |
intfloat/e5-mistral-7b-instruct | 0.73795 | 0.09777 | 0.63076 | 0.17078 |
openai/text-embedding-3-large | 0.72946 | 0.09571 | 0.61670 | 0.16739 |
Salesforce/SFR-Embedding-2_R | 0.71662 | 0.09546 | 0.60589 | 0.16651 |
upskyy/bge-m3-korean | 0.71895 | 0.09583 | 0.60258 | 0.16712 |
jhgan/ko-sroberta-multitask | 0.61225 | 0.07826 | 0.48687 | 0.13757 |
FAQ
- Do I need to add the prefix "query: " and "passage: " to input texts?
Yes, this is how the model is trained, otherwise you will see a performance degradation.
Here are some rules of thumb:
Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.
Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval.
Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.
Citation
If you find our paper or models helpful, please consider cite as follows:
@misc{KURE,
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
year = {2024},
url = {https://github.com/nlpai-lab/KURE}
},
@misc{KoE5,
author = {NLP & AI Lab and Human-Inspired AI research},
title = {KoE5: A New Dataset and Model for Improving Korean Embedding Performance},
year = {2024},
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
journal = {GitHub repository},
howpublished = {\url{https://github.com/nlpai-lab/KoE5}},
}
Limitations
Long texts will be truncated to at most 512 tokens.
- Downloads last month
- 6,757