MultiModal MultiLingual (3ML)

This model is 4bit quantized of glm-4v-9b Model (Less than 9G).

It excels in document, image, chart questioning answering and delivers superior performance over GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.

Some part of the original Model changed and It can excute on free version of google colab.

Try it: Open In Colab

![Github Source]

Note: For optimal performance with document and image understanding, please use English or Chinese. The model can still handle chat in any supported language.

About GLM-4V-9B

GLM-4V-9B is a multimodal language model with visual understanding capabilities. The evaluation results of its related classic tasks are as follows:

MMBench-EN-Test MMBench-CN-Test SEEDBench_IMG MMStar MMMU MME HallusionBench AI2D OCRBench
θ‹±ζ–‡η»Όεˆ δΈ­ζ–‡η»Όεˆ η»Όεˆθƒ½εŠ› η»Όεˆθƒ½εŠ› ε­¦η§‘η»Όεˆ ζ„ŸηŸ₯ζŽ¨η† 幻觉性 图葨理解 ζ–‡ε­—θ―†εˆ«
GPT-4o, 20240513 83.4 82.1 77.1 63.9 69.2 2310.3 55 84.6 736
GPT-4v, 20240409 81 80.2 73 56 61.7 2070.2 43.9 78.6 656
GPT-4v, 20231106 77 74.4 72.3 49.7 53.8 1771.5 46.5 75.9 516
InternVL-Chat-V1.5 82.3 80.7 75.2 57.1 46.8 2189.6 47.4 80.6 720
LlaVA-Next-Yi-34B 81.1 79 75.7 51.6 48.8 2050.2 34.8 78.9 574
Step-1V 80.7 79.9 70.3 50 49.9 2206.4 48.4 79.2 625
MiniCPM-Llama3-V2.5 77.6 73.8 72.3 51.8 45.8 2024.6 42.4 78.4 725
Qwen-VL-Max 77.6 75.7 72.7 49.5 52 2281.7 41.2 75.7 684
GeminiProVision 73.6 74.3 70.7 38.6 49 2148.9 45.7 72.9 680
Claude-3V Opus 63.3 59.2 64 45.7 54.9 1586.8 37.8 70.6 694
GLM-4v-9B 81.1 79.4 76.8 58.7 47.2 2163.8 46.6 81.1 786
This repository is the model repository of 4bit quantized of GLM-4V-9B model, supporting 8K context length.

Quick Start

Use colab model or this python script.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

device = "cuda"

modelPath="nikravan/glm-4vq"
tokenizer = AutoTokenizer.from_pretrained(modelPath, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    modelPath,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    device_map="auto"
)



query ='explain all the details in this picture'
image = Image.open("a3.png").convert('RGB')
#image=""
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
                                       add_generation_prompt=True, tokenize=True, return_tensors="pt",
                                       return_dict=True)  # chat with image mode

inputs = inputs.to(device)

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0]))
Downloads last month
731
Safetensors
Model size
7.49B params
Tensor type
F32
Β·
BF16
Β·
U8
Β·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Spaces using nikravan/glm-4vq 6