tags: | |
- generated_from_trainer | |
datasets: | |
- mlsum | |
metrics: | |
- rouge | |
base_model: facebook/mbart-large-50 | |
model-index: | |
- name: mbart-large-turkish-sum | |
results: | |
- task: | |
type: summarization | |
name: Summarization | |
dataset: | |
name: mlsum tu | |
type: mlsum | |
args: tu | |
metrics: | |
- type: rouge | |
value: 46.7011 | |
name: Rouge1 | |
# [Mukayese: Turkish NLP Strikes Back](https://arxiv.org/abs/2203.01215) | |
## Summarization: mukayese/mbart-large-turkish-sum | |
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the mlsum/tu dataset. | |
It achieves the following results on the evaluation set: | |
- Rouge1: 46.7011 | |
- Rouge2: 34.0087 | |
- Rougel: 41.5475 | |
- Rougelsum: 43.2108 | |
Check [this](https://arxiv.org/abs/2203.01215) paper for more details on the model and the dataset. | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 5e-05 | |
- train_batch_size: 2 | |
- eval_batch_size: 4 | |
- seed: 42 | |
- distributed_type: multi-GPU | |
- num_devices: 8 | |
- gradient_accumulation_steps: 4 | |
- total_train_batch_size: 64 | |
- total_eval_batch_size: 32 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 10.0 | |
- mixed_precision_training: Native AMP | |
- label_smoothing_factor: 0.1 | |
### Framework versions | |
- Transformers 4.11.3 | |
- Pytorch 1.8.2+cu111 | |
- Datasets 1.14.0 | |
- Tokenizers 0.10.3 | |
### Citation | |
``` | |
@misc{safaya-etal-2022-mukayese, | |
title={Mukayese: Turkish NLP Strikes Back}, | |
author={Ali Safaya and Emirhan Kurtuluş and Arda Göktoğan and Deniz Yuret}, | |
year={2022}, | |
eprint={2203.01215}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
``` | |