mobicham's picture
Update README.md
3230c99 verified
|
raw
history blame
2.11 kB
metadata
license: mit
train: false
inference: false
pipeline_tag: text-generation

This is a version of the DeepSeek-R1-Distill-Qwen-1.5B model re-distilled for better performance.

Performance

Models DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1
ARC (25-shot) 40.96 41.3
HellaSwag (10-shot) 44 45.22
MMLU (5-shot) 39.27 42.01
TruthfulQA-MC2 45.17 46.64
Winogrande (5-shot) 55.49 56.75
GSM8K (5-shot) 69.9 73.24
Average 49.13 50.86
Models DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1
GPQA (0-shot) 26.96 27.8
MMLU PRO (5-shot) 16.74 19.44
MUSR (0-shot) 35.93 35.94
BBH (3-shot) 35.12 35.11
Average

Usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
compute_dtype = torch.bfloat16
device   = 'cuda'
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1"

model     = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device)
tokenizer = AutoTokenizer.from_pretrained(model_id)

chat    = tokenizer.apply_chat_template([{"role":"user", "content":"What is 1.5+102.2?"}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True) 
print(tokenizer.decode(outputs[0]))