metadata
license: apache-2.0
base_model:
- OpenPipe/mistral-ft-optimized-1218
- mlabonne/NeuralHermes-2.5-Mistral-7B
tags:
- merge
- mergekit
model-index:
- name: NeuralPipe-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.75
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralPipe-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.15
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralPipe-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.94
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralPipe-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 59.8
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralPipe-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.64
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralPipe-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.75
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralPipe-7B-slerp
name: Open LLM Leaderboard
NeuralPipe-7B
This model is a merge of the following models made with mergekit:
⚡ Quantized models
Thanks to TheBloke and ZeroWw for the quantized models:
- GGUF: https://huggingface.co/TheBloke/NeuralPipe-7B-slerp-GGUF
- GGUF f16.qX: https://huggingface.co/ZeroWw/NeuralPipe-7B-slerp-GGUF
- AWQ: https://huggingface.co/TheBloke/NeuralPipe-7B-slerp-AWQ
- GPTQ: https://huggingface.co/TheBloke/NeuralPipe-7B-slerp-GPTQ
🧩 Configuration
slices:
- sources:
- model: OpenPipe/mistral-ft-optimized-1218
layer_range: [0, 32]
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralPipe-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Output:
A large language model is an AI system that uses deep learning techniques to process and understand vast amounts of natural language data. It is designed to generate human-like text, perform complex language tasks, and understand the context, nuance, and meaning of textual data. These models are trained on large datasets, often including billions of words, to learn the patterns and relationships in language. As a result, they can generate coherent and contextually relevant text, answer questions, and perform a variety of other language-related tasks. Some well-known large language models include OpenAI's GPT-3, Google's BERT, and Facebook's RoBERTa.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.17 |
AI2 Reasoning Challenge (25-Shot) | 67.75 |
HellaSwag (10-Shot) | 86.15 |
MMLU (5-Shot) | 63.94 |
TruthfulQA (0-shot) | 59.80 |
Winogrande (5-shot) | 79.64 |
GSM8k (5-shot) | 69.75 |