scibert-scivocab-uncased_pub_section
- original model file name: textclassifer_scibert_scivocab_uncased_pubmed_full
- This is a fine-tuned checkpoint of
allenai/scibert_scivocab_uncased
for document section text classification - possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS,
usage in python
install transformers as needed: pip install -U transformers
run the following, changing the example text to your use case:
from transformers import pipeline
model_tag = "ml4pubmed/scibert-scivocab-uncased_pub_section"
classifier = pipeline(
'text-classification',
model=model_tag,
)
prompt = """
Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.
"""
classifier(
prompt,
) # classify the sentence
metadata
training_metrics
date_run: Apr-25-2022_t-03
huggingface_tag: allenai/scibert_scivocab_uncased
training_parameters
date_run: Apr-25-2022_t-03
huggingface_tag: allenai/scibert_scivocab_uncased
- Downloads last month
- 120
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.