math_ft

This model is a fine-tuned version of PrunaAI/deepseek-ai-deepseek-math-7b-rl-bnb-4bit-smashed on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.0364 0.9655 7 0.7955
0.7271 1.9310 14 0.6199
0.604 2.8966 21 0.5675
0.4951 4.0 29 0.5419
0.5483 4.9655 36 0.5294
0.531 5.9310 43 0.5218
0.5217 6.8966 50 0.5168
0.4511 8.0 58 0.5131
0.5083 8.9655 65 0.5115
0.4632 9.6552 70 0.5111

Framework versions

  • PEFT 0.11.1
  • Transformers 4.40.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for minhdang/math_ft