calculator_model_test
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0094
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.9219 | 1.0 | 6 | 2.2235 |
1.9996 | 2.0 | 12 | 1.6925 |
1.4545 | 3.0 | 18 | 1.1007 |
0.9701 | 4.0 | 24 | 0.8044 |
0.7563 | 5.0 | 30 | 0.6572 |
0.5984 | 6.0 | 36 | 0.6227 |
0.5377 | 7.0 | 42 | 0.4585 |
0.442 | 8.0 | 48 | 0.3971 |
0.375 | 9.0 | 54 | 0.3378 |
0.3181 | 10.0 | 60 | 0.2967 |
0.2961 | 11.0 | 66 | 0.2787 |
0.2671 | 12.0 | 72 | 0.2398 |
0.2469 | 13.0 | 78 | 0.2102 |
0.2154 | 14.0 | 84 | 0.2098 |
0.2032 | 15.0 | 90 | 0.1873 |
0.1822 | 16.0 | 96 | 0.1632 |
0.1658 | 17.0 | 102 | 0.1475 |
0.1575 | 18.0 | 108 | 0.1309 |
0.1424 | 19.0 | 114 | 0.1175 |
0.1256 | 20.0 | 120 | 0.0999 |
0.1027 | 21.0 | 126 | 0.0867 |
0.0968 | 22.0 | 132 | 0.0781 |
0.0772 | 23.0 | 138 | 0.0648 |
0.0703 | 24.0 | 144 | 0.0522 |
0.0591 | 25.0 | 150 | 0.0427 |
0.0531 | 26.0 | 156 | 0.0322 |
0.0465 | 27.0 | 162 | 0.0296 |
0.0486 | 28.0 | 168 | 0.0284 |
0.0392 | 29.0 | 174 | 0.0280 |
0.0333 | 30.0 | 180 | 0.0264 |
0.0327 | 31.0 | 186 | 0.0172 |
0.0274 | 32.0 | 192 | 0.0175 |
0.0251 | 33.0 | 198 | 0.0149 |
0.0236 | 34.0 | 204 | 0.0143 |
0.0211 | 35.0 | 210 | 0.0115 |
0.0197 | 36.0 | 216 | 0.0106 |
0.0182 | 37.0 | 222 | 0.0111 |
0.0164 | 38.0 | 228 | 0.0105 |
0.0172 | 39.0 | 234 | 0.0097 |
0.0162 | 40.0 | 240 | 0.0094 |
Framework versions
- Transformers 4.45.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.20.3
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.