wac2vec-lllfantomlll

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5560
  • Wer: 0.3417

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5768 1.0 500 2.0283 1.0238
0.9219 2.01 1000 0.5103 0.5022
0.4497 3.01 1500 0.4746 0.4669
0.3163 4.02 2000 0.4144 0.4229
0.2374 5.02 2500 0.4186 0.4161
0.2033 6.02 3000 0.4115 0.3975
0.1603 7.03 3500 0.4424 0.3817
0.1455 8.03 4000 0.4151 0.3918
0.1276 9.04 4500 0.4940 0.3798
0.108 10.04 5000 0.4580 0.3688
0.1053 11.04 5500 0.4243 0.3700
0.0929 12.05 6000 0.4999 0.3727
0.0896 13.05 6500 0.4991 0.3624
0.0748 14.06 7000 0.4924 0.3602
0.0681 15.06 7500 0.4908 0.3544
0.0619 16.06 8000 0.5021 0.3559
0.0569 17.07 8500 0.5448 0.3518
0.0549 18.07 9000 0.4919 0.3508
0.0478 19.08 9500 0.4704 0.3513
0.0437 20.08 10000 0.5058 0.3555
0.0421 21.08 10500 0.5127 0.3489
0.0362 22.09 11000 0.5439 0.3527
0.0322 23.09 11500 0.5418 0.3469
0.0327 24.1 12000 0.5298 0.3422
0.0292 25.1 12500 0.5511 0.3426
0.0246 26.1 13000 0.5349 0.3472
0.0251 27.11 13500 0.5646 0.3391
0.0214 28.11 14000 0.5821 0.3424
0.0217 29.12 14500 0.5560 0.3417

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.