CodeBertForCodeSummary

This model is a fine-tuned version of microsoft/codebert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3533

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 14400.0
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
5.051 1.0 750 4.6658
3.7963 2.0 1500 3.6102
3.2207 3.0 2250 2.9757
2.7558 4.0 3000 2.5950
2.4409 5.0 3750 2.3054
2.188 6.0 4500 2.0653
1.9616 7.0 5250 1.8439
1.7515 8.0 6000 1.6953
1.6408 9.0 6750 1.5872
1.4843 10.0 7500 1.5153
1.4453 11.0 8250 1.4662
1.3443 12.0 9000 1.4222
1.2826 13.0 9750 1.3990
1.2005 14.0 10500 1.3829
1.1559 15.0 11250 1.3678
1.0938 16.0 12000 1.3504
1.0285 17.0 12750 1.3493
0.9802 18.0 13500 1.3568
0.9333 19.0 14250 1.3549
0.8453 20.0 15000 1.3533

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ljcnju/CodeBertForCodeSummary

Finetuned
(30)
this model