Blur-7b-v1.2

Blur-7b-v1.2 is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: liminerity/Blured-Ties-7B
    parameters:
      density: [1, 0.7, 0.1] # density gradient
      weight: 1.0
  - model: freecs/ThetaWave-7B
    parameters:
      density: 0.33
      weight:
        - filter: mlp
          value: 0.5
        - value: 0
merge_method: ties
base_model: mlabonne/NeuralBeagle14-7B
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
name: gradient-slerp-ties

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "liminerity/Blur-7b-v1.2"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 67.74
AI2 Reasoning Challenge (25-Shot) 65.36
HellaSwag (10-Shot) 83.88
MMLU (5-Shot) 63.45
TruthfulQA (0-shot) 60.30
Winogrande (5-shot) 80.58
GSM8k (5-shot) 52.84
Downloads last month
75
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for liminerity/Blur-7b-v1.2

Merge model
this model
Merges
1 model
Quantizations
2 models

Evaluation results