See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 18a5afee19d07bd3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/18a5afee19d07bd3_train_data.json
type:
field_input: captions
field_instruction: ASR
field_output: whole_caption
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso15/88f1be1e-60bc-40f1-b83e-84e274d81dc0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000215
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/18a5afee19d07bd3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 150
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 19d65acb-908a-4ff2-b1f6-0eb0b9d338a3
wandb_project: 15a
wandb_run: your_name
wandb_runid: 19d65acb-908a-4ff2-b1f6-0eb0b9d338a3
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
88f1be1e-60bc-40f1-b83e-84e274d81dc0
This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.8173
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000215
- train_batch_size: 4
- eval_batch_size: 4
- seed: 150
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0000 | 1 | 11.9326 |
11.8764 | 0.0016 | 50 | 11.8651 |
11.843 | 0.0032 | 100 | 11.8445 |
11.833 | 0.0048 | 150 | 11.8337 |
11.8239 | 0.0064 | 200 | 11.8266 |
11.8237 | 0.0081 | 250 | 11.8225 |
11.8179 | 0.0097 | 300 | 11.8207 |
11.8168 | 0.0113 | 350 | 11.8190 |
11.8152 | 0.0129 | 400 | 11.8179 |
11.8169 | 0.0145 | 450 | 11.8174 |
11.8159 | 0.0161 | 500 | 11.8173 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso15/88f1be1e-60bc-40f1-b83e-84e274d81dc0
Base model
katuni4ka/tiny-random-qwen1.5-moe