Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: unsloth/Mistral-Nemo-Base-2407
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 1f94ae24cc73068e_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/1f94ae24cc73068e_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso14/472f42e3-9cb2-48ae-bed2-be75bff211fb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000214
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/1f94ae24cc73068e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 140
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 5a12d806-2023-4dbc-8b0f-35410fb2372a
wandb_project: 14a
wandb_run: your_name
wandb_runid: 5a12d806-2023-4dbc-8b0f-35410fb2372a
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

472f42e3-9cb2-48ae-bed2-be75bff211fb

This model is a fine-tuned version of unsloth/Mistral-Nemo-Base-2407 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3748

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000214
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 140
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 1.9485
2.8283 0.0051 50 1.5574
3.4491 0.0103 100 1.6632
2.9376 0.0154 150 1.6516
2.8351 0.0205 200 1.5453
2.9393 0.0257 250 1.5059
2.546 0.0308 300 1.4548
2.9851 0.0359 350 1.4037
3.1204 0.0411 400 1.3828
2.7988 0.0462 450 1.3792
2.6229 0.0513 500 1.3748

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso14/472f42e3-9cb2-48ae-bed2-be75bff211fb

Adapter
(232)
this model