Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: Qwen/Qwen2.5-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e1d136a86ab06d08_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e1d136a86ab06d08_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: responses
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso08/2891aee9-fc62-40cb-88f1-8ad8b544025a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000208
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/e1d136a86ab06d08_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 80
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c4fbd050-0dc5-4c85-b766-2c4450377849
wandb_project: 08a
wandb_run: your_name
wandb_runid: c4fbd050-0dc5-4c85-b766-2c4450377849
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

2891aee9-fc62-40cb-88f1-8ad8b544025a

This model is a fine-tuned version of Qwen/Qwen2.5-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3380

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000208
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 80
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0000 1 3.7290
0.3155 0.0016 50 0.3700
0.3009 0.0031 100 0.3172
0.2479 0.0047 150 0.3522
0.2474 0.0062 200 0.3933
0.3 0.0078 250 0.3380

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso08/2891aee9-fc62-40cb-88f1-8ad8b544025a

Base model

Qwen/Qwen2.5-7B
Adapter
(368)
this model