See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: Maykeye/TinyLLama-v0
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0b711362b5e882a7_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0b711362b5e882a7_train_data.json
type:
field_input: documents
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso06/bf6a45f0-c90d-4d36-adeb-9e26868e9576
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000206
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/0b711362b5e882a7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 60
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0f65094d-5d32-4d26-af34-69fddfd32cf4
wandb_project: 06a
wandb_run: your_name
wandb_runid: 0f65094d-5d32-4d26-af34-69fddfd32cf4
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
bf6a45f0-c90d-4d36-adeb-9e26868e9576
This model is a fine-tuned version of Maykeye/TinyLLama-v0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 7.3675
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000206
- train_batch_size: 4
- eval_batch_size: 4
- seed: 60
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 8.5308 |
7.756 | 0.0105 | 50 | 7.9158 |
7.4785 | 0.0209 | 100 | 7.6264 |
7.3123 | 0.0314 | 150 | 7.5076 |
7.3021 | 0.0419 | 200 | 7.4542 |
7.2916 | 0.0523 | 250 | 7.4184 |
7.1929 | 0.0628 | 300 | 7.4012 |
7.0804 | 0.0732 | 350 | 7.3856 |
7.1351 | 0.0837 | 400 | 7.3719 |
7.1269 | 0.0942 | 450 | 7.3695 |
7.2618 | 0.1046 | 500 | 7.3675 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso06/bf6a45f0-c90d-4d36-adeb-9e26868e9576
Base model
Maykeye/TinyLLama-v0