Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/pythia-410m-deduped
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e2a2b44307f66d57_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e2a2b44307f66d57_train_data.json
  type:
    field_input: knowledge
    field_instruction: dialogue_history
    field_output: right_response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
ddp_timeout: 1800
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
group_by_length: true
hub_model_id: leixa/96c94691-9c24-45f5-a5ed-7477bb4858fa
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 1500
micro_batch_size: 4
mlflow_experiment_name: /tmp/e2a2b44307f66d57_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.999
  adam_epsilon: 1e-08
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
relora_prune_ratio: 0.9
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: acopia-grant
wandb_mode: online
wandb_name: 5ff9dd80-dde9-4d82-b69f-5d0a4dc5e439
wandb_project: Gradients-On-112
wandb_run: your_name
wandb_runid: 5ff9dd80-dde9-4d82-b69f-5d0a4dc5e439
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

96c94691-9c24-45f5-a5ed-7477bb4858fa

This model is a fine-tuned version of EleutherAI/pythia-410m-deduped on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0017 1 4.0386
11.2932 0.2591 150 2.9152
10.8523 0.5181 300 2.7366
11.514 0.7772 450 2.9303
10.2036 1.0363 600 2.6249
9.9844 1.2953 750 2.6088
10.5367 1.5544 900 2.6833
9.9794 1.8135 1050 2.6103
9.4328 2.0725 1200 2.5481
10.1758 2.3316 1350 2.5467
10.6133 2.5907 1500 2.5841

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for leixa/96c94691-9c24-45f5-a5ed-7477bb4858fa

Adapter
(233)
this model