Indonesian GPT2 Medical Chatbot

This model is a fine-tuned version of GPT-2 for medical chatbot in the Indonesian language. It can be used to generate answers to various medical questions.

Model Sources

Dataset

Metric Value
Global Steps 14480
Training Loss 0.3822
Training Runtime 15150.72 seconds
Training Samples per Second 11.47 samples/sec
Training Steps per Second 0.96 steps/sec
Total FLOPs 4.54e+16
Epoch 5.0

How to Use

!pip install transformers torch

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "lafarizo/indo_medical_gpt2_v2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

input_text = input("Pertanyaan: ")

inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True, max_length=512)

input_ids = inputs['input_ids'].to(device)
attention_mask = inputs['attention_mask'].to(device)

outputs = model.generate(
    input_ids=input_ids,
    attention_mask=attention_mask,
    max_length=512,            
    num_beams=5,               
    temperature=0.7,           
    top_k=50,                  
    top_p=0.9,                 
    no_repeat_ngram_size=2,   
    do_sample=True,           
    eos_token_id=tokenizer.eos_token_id,  
    pad_token_id=tokenizer.pad_token_id
)

generated_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)

if generated_answer.lower().startswith(input_text.lower()):
    generated_answer = generated_answer[len(input_text):].strip()

print("Jawaban: ", generated_answer)
Downloads last month
5
Safetensors
Model size
124M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for lafarizo/indo_medical_gpt2_v2

Finetuned
(1)
this model

Dataset used to train lafarizo/indo_medical_gpt2_v2