calculator_model_test
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1171
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.0616 | 1.0 | 6 | 2.4103 |
2.1327 | 2.0 | 12 | 1.8156 |
1.6546 | 3.0 | 18 | 1.4538 |
1.3238 | 4.0 | 24 | 1.1793 |
1.0938 | 5.0 | 30 | 1.0270 |
0.9418 | 6.0 | 36 | 0.8882 |
0.8472 | 7.0 | 42 | 0.8048 |
0.8069 | 8.0 | 48 | 0.7782 |
0.7235 | 9.0 | 54 | 0.6833 |
0.6806 | 10.0 | 60 | 0.6410 |
0.626 | 11.0 | 66 | 0.5912 |
0.5771 | 12.0 | 72 | 0.5144 |
0.5162 | 13.0 | 78 | 0.4871 |
0.4921 | 14.0 | 84 | 0.4862 |
0.4791 | 15.0 | 90 | 0.4469 |
0.4594 | 16.0 | 96 | 0.3999 |
0.3923 | 17.0 | 102 | 0.3790 |
0.3812 | 18.0 | 108 | 0.3455 |
0.3584 | 19.0 | 114 | 0.3355 |
0.3303 | 20.0 | 120 | 0.2909 |
0.2955 | 21.0 | 126 | 0.2728 |
0.2934 | 22.0 | 132 | 0.3018 |
0.2927 | 23.0 | 138 | 0.2477 |
0.2647 | 24.0 | 144 | 0.2527 |
0.2712 | 25.0 | 150 | 0.2479 |
0.2469 | 26.0 | 156 | 0.2299 |
0.2568 | 27.0 | 162 | 0.2180 |
0.2518 | 28.0 | 168 | 0.2178 |
0.2378 | 29.0 | 174 | 0.2158 |
0.222 | 30.0 | 180 | 0.1843 |
0.1971 | 31.0 | 186 | 0.1780 |
0.1936 | 32.0 | 192 | 0.1677 |
0.1928 | 33.0 | 198 | 0.1573 |
0.1708 | 34.0 | 204 | 0.1471 |
0.153 | 35.0 | 210 | 0.1375 |
0.16 | 36.0 | 216 | 0.1321 |
0.1493 | 37.0 | 222 | 0.1255 |
0.1438 | 38.0 | 228 | 0.1204 |
0.1401 | 39.0 | 234 | 0.1181 |
0.1492 | 40.0 | 240 | 0.1171 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.20.3
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.