kazars24's picture
End of training
c88d621 verified
|
raw
history blame
2.39 kB
metadata
license: mit
base_model: cointegrated/rubert-tiny2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: rubert-tiny2-ner-drugname
    results: []

rubert-tiny2-ner-drugname

This model is a fine-tuned version of cointegrated/rubert-tiny2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0549
  • Precision: 0.7232
  • Recall: 0.7690
  • F1: 0.7454
  • Accuracy: 0.9883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 61 0.0493 0.6413 0.7468 0.6901 0.9833
No log 2.0 122 0.0417 0.6406 0.8291 0.7228 0.9855
No log 3.0 183 0.0387 0.7588 0.7468 0.7528 0.9879
No log 4.0 244 0.0396 0.7385 0.7595 0.7488 0.9883
No log 5.0 305 0.0425 0.6897 0.7595 0.7229 0.9874
No log 6.0 366 0.0465 0.6991 0.7722 0.7338 0.9876
No log 7.0 427 0.0487 0.7062 0.7911 0.7463 0.9877
No log 8.0 488 0.0521 0.7076 0.7658 0.7356 0.9882
0.0306 9.0 549 0.0540 0.7262 0.7722 0.7485 0.9883
0.0306 10.0 610 0.0549 0.7232 0.7690 0.7454 0.9883

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1