tokens

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9811
  • Wer: 0.4608

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.5212 0.59 400 3.3776 1.0
2.4798 1.18 800 1.0697 0.7740
1.0057 1.77 1200 0.7077 0.6487
0.7731 2.36 1600 0.6113 0.5883
0.6917 2.94 2000 0.5618 0.5573
0.5844 3.53 2400 0.5610 0.5532
0.5606 4.12 2800 0.5584 0.5484
0.4973 4.71 3200 0.5466 0.5333
0.4721 5.3 3600 0.5495 0.5178
0.4439 5.89 4000 0.5667 0.5237
0.3965 6.48 4400 0.5865 0.5322
0.3876 7.07 4800 0.6099 0.5135
0.3407 7.66 5200 0.5891 0.5228
0.33 8.25 5600 0.6135 0.5072
0.3032 8.84 6000 0.6004 0.5028
0.2706 9.43 6400 0.6321 0.4991
0.2709 10.01 6800 0.6541 0.5051
0.2373 10.6 7200 0.6613 0.5119
0.2284 11.19 7600 0.6798 0.5086
0.212 11.78 8000 0.6509 0.4910
0.1983 12.37 8400 0.7018 0.5043
0.1947 12.96 8800 0.6826 0.4965
0.1717 13.55 9200 0.7056 0.4828
0.1741 14.14 9600 0.7544 0.5060
0.1626 14.73 10000 0.7331 0.4915
0.1529 15.32 10400 0.7518 0.4772
0.1504 15.91 10800 0.7362 0.4732
0.1401 16.49 11200 0.7179 0.4769
0.1335 17.08 11600 0.7716 0.4826
0.1185 17.67 12000 0.7465 0.4798
0.1182 18.26 12400 0.8105 0.4733
0.1135 18.85 12800 0.7693 0.4743
0.1098 19.44 13200 0.8362 0.4888
0.1023 20.03 13600 0.8427 0.4768
0.1003 20.62 14000 0.8079 0.4741
0.0936 21.21 14400 0.8551 0.4651
0.0875 21.8 14800 0.8462 0.4712
0.0843 22.39 15200 0.9177 0.4782
0.0846 22.97 15600 0.8618 0.4735
0.08 23.56 16000 0.9017 0.4687
0.0789 24.15 16400 0.9034 0.4659
0.0717 24.74 16800 0.9690 0.4734
0.0714 25.33 17200 0.9395 0.4677
0.0699 25.92 17600 0.9222 0.4608
0.0658 26.51 18000 0.9222 0.4621
0.0612 27.1 18400 0.9691 0.4586
0.0583 27.69 18800 0.9647 0.4581
0.0596 28.28 19200 0.9820 0.4614
0.056 28.87 19600 0.9795 0.4596
0.055 29.45 20000 0.9811 0.4608

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.10.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kalmuraee/tokens