|
--- |
|
library_name: transformers |
|
datasets: |
|
- Bingsu/zeroth-korean |
|
- google/fleurs |
|
language: |
|
- ko |
|
metrics: |
|
- cer |
|
- wer |
|
- bleu |
|
base_model: |
|
- microsoft/Phi-4-multimodal-instruct |
|
model-index: |
|
- name: Phi-4-multimodal-instruct-ko-asr |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
dataset: |
|
type: Bingsu/zeroth_korean |
|
name: zeroth-korean-test |
|
metrics: |
|
- type: bleu |
|
name: zeroth-test-BLEU |
|
value: 94.837 |
|
- type: cer |
|
name: zeroth-test-CER |
|
value: 1.429 |
|
- type: wer |
|
name: zeroth-test-WER |
|
value: 2.951 |
|
- task: |
|
type: automatic-speech-recognition |
|
dataset: |
|
type: google/flerus |
|
name: flerus-ko-test |
|
metrics: |
|
- type: bleu |
|
name: fleurs-test-BLEU |
|
value: 67.659 |
|
- type: cer |
|
name: fleurs-test-CER |
|
value: 7.951 |
|
- type: wer |
|
name: fleurs-test-WER |
|
value: 18.313 |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
|
|
|
|
This model is fine-tuned from [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) on [Bingsu/zeroth-korean](https://huggingface.co/datasets/Bingsu/zeroth-korean), [google/flerus](https://huggingface.co/datasets/Bingsu/google/flerus) in 5 epochs. |
|
|
|
This model is trained 960 steps on datasets for Korean Audio Speech Recognition on H100. |
|
|
|
After that, we will check if it can perform scalable work through additional training with synthetic data from CoVoST2 Dataset into Korean. |
|
|
|
## Evaluation |
|
|
|
Evaluation by |
|
``` |
|
from whisper_normalizer.basic import BasicTextNormalizer |
|
from evaluate import load |
|
|
|
normalizer = BasicTextNormalizer() |
|
cer_metric = load("cer") |
|
wer_metric = load("wer") |
|
``` |
|
|
|
| Model | zeroth-test-BLEU | zeroth-test-CER | zeroth-test-WER | fleurs-test-BLEU | fleurs-test-CER | fleurs-test-WER | |
|
|--------------------|------------------|-----------------|-----------------|------------------|-----------------|-----------------| |
|
| original | 0.071 | 126.4 | 121.5 | 0.010 | 115.7 | 112.8 | |
|
| finetune (this model) | 94.837 | 1.429 | 2.951 | 67.659 | 7.951 | 18.313 | |
|
|
|
|
|
Evaluation was done on the following datasets: |
|
- ASR (Automatic Speech Recognition): Evaluated with CER (Character Error Rate) on zeroth-test set (457 samples). |
|
- AST (Automatic Speech Translation): Evaluated with BLEU score on fleurs ko <-> en speech translation result (270 samples). |
|
|
|
Script is retrieved from [here](https://gist.github.com/seastar105/d1d8983b27611370528e3b194dcc5577#file-evaluate-py). |
|
|
|
Compared to [Phi-4-mm-inst-zeroth-kor](https://huggingface.co/seastar105/Phi-4-mm-inst-zeroth-kor) and [Phi-4-multimodal-finetune-ko-speech](https://huggingface.co/daekeun-ml/Phi-4-multimodal-finetune-ko-speech), ASR is significantly improved. |
|
|
|
| Model | zeroth-test | fleurs-ko2en | fleurs-ko2en-cot | fleurs-en2ko | fleurs-en2ko-cot | |
|
|----------------------|-------------|--------------|------------------|--------------|------------------| |
|
| original | 198.32 | 5.63 | 2.42 | 6.86 | 4.17 | |
|
| daekeun-ml/Phi-4-multimodal-finetune-ko-speech| 3.80 | 7.03 | 7.04 | 12.50 | 9.54 | |
|
| seastar105/Phi-4-mm-inst-zeroth-kor | 7.02 | 7.07 | 9.19 | 13.08 | 9.35 | |
|
| ASR finetune (this model)| 1.31 | 7.46 | 6.24 | 12.15 | 8.91 | |
|
| + AST finetune with (AST)[https://huggingface.co/datasets/junnei/covost2]| 3.88 | 8.07 | 10.09 | 18.82 | 15.41 | |
|
|
|
|