Model Provided by ParmaLLC

The base model is publicly available and free to use for commercial use on HuggingFace:

Quick Start Code (Inside Cloned Repo)

import model
from PIL import Image
import torch


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

file = "./image.png" # input image

model = model.BEN_Base().to(device).eval() #init pipeline

model.loadcheckpoints("./BEN_Base.pth")
image = Image.open(file)
mask, foreground = model.inference(image)

mask.save("./mask.png")
foreground.save("./foreground.png")

BEN SOA Benchmarks on Disk 5k Eval

Demo Results

BEN_Base + BEN_Refiner (commercial model please contact us for more information):

  • MAE: 0.0270
  • DICE: 0.8989
  • IOU: 0.8506
  • BER: 0.0496
  • ACC: 0.9740

BEN_Base (94 million parameters):

  • MAE: 0.0309
  • DICE: 0.8806
  • IOU: 0.8371
  • BER: 0.0516
  • ACC: 0.9718

MVANet (old SOTA):

  • MAE: 0.0353
  • DICE: 0.8676
  • IOU: 0.8104
  • BER: 0.0639
  • ACC: 0.9660

BiRefNet(not tested in house):

  • MAE: 0.038

InSPyReNet (not tested in house):

  • MAE: 0.042

Features

  • Background removal from images
  • Generates both binary mask and foreground image
  • CUDA support for GPU acceleration
  • Simple API for easy integration

Installation

  1. Clone Repo
  2. Install requirements.txt
Downloads last month
16
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.