dynamo_ssl / envs /pusht.py
jeffacce
initial commit
393d3de
# env import
import gym
import einops
from gym import spaces
from pymunk.space_debug_draw_options import SpaceDebugColor
from pymunk.vec2d import Vec2d
from typing import Tuple, Sequence, Dict, Union, Optional
import pygame
import pymunk
import numpy as np
import shapely.geometry as sg
import cv2
import skimage.transform as st
import pymunk.pygame_util
import collections
from matplotlib import cm
import torch
# @markdown ### **Environment**
# @markdown Defines a PyMunk-based Push-T environment `PushTEnv`.
# @markdown
# @markdown **Goal**: push the gray T-block into the green area.
# @markdown
# @markdown Adapted from [Implicit Behavior Cloning](https://implicitbc.github.io/)
positive_y_is_up: bool = False
"""Make increasing values of y point upwards.
When True::
y
^
| . (3, 3)
|
| . (2, 2)
|
+------ > x
When False::
+------ > x
|
| . (2, 2)
|
| . (3, 3)
v
y
"""
def farthest_point_sampling(points: np.ndarray, n_points: int, init_idx: int):
"""
Naive O(N^2)
"""
assert n_points >= 1
chosen_points = [points[init_idx]]
for _ in range(n_points - 1):
cpoints = np.array(chosen_points)
all_dists = np.linalg.norm(points[:, None, :] - cpoints[None, :, :], axis=-1)
min_dists = all_dists.min(axis=1)
next_idx = np.argmax(min_dists)
next_pt = points[next_idx]
chosen_points.append(next_pt)
result = np.array(chosen_points)
return result
class PymunkKeypointManager:
def __init__(
self,
local_keypoint_map: Dict[str, np.ndarray],
color_map: Optional[Dict[str, np.ndarray]] = None,
):
"""
local_keypoint_map:
"<attribute_name>": (N,2) floats in object local coordinate
"""
if color_map is None:
cmap = cm.get_cmap("tab10")
color_map = dict()
for i, key in enumerate(local_keypoint_map.keys()):
color_map[key] = (np.array(cmap.colors[i]) * 255).astype(np.uint8)
self.local_keypoint_map = local_keypoint_map
self.color_map = color_map
@property
def kwargs(self):
return {
"local_keypoint_map": self.local_keypoint_map,
"color_map": self.color_map,
}
@classmethod
def create_from_pusht_env(cls, env, n_block_kps=9, n_agent_kps=3, seed=0, **kwargs):
rng = np.random.default_rng(seed=seed)
local_keypoint_map = dict()
for name in ["block", "agent"]:
self = env
self.space = pymunk.Space()
if name == "agent":
self.agent = obj = self.add_circle((256, 400), 15)
n_kps = n_agent_kps
else:
self.block = obj = self.add_tee((256, 300), 0)
n_kps = n_block_kps
self.screen = pygame.Surface((512, 512))
self.screen.fill(pygame.Color("white"))
draw_options = DrawOptions(self.screen)
self.space.debug_draw(draw_options)
# pygame.display.flip()
img = np.uint8(pygame.surfarray.array3d(self.screen).transpose(1, 0, 2))
obj_mask = (img != np.array([255, 255, 255], dtype=np.uint8)).any(axis=-1)
tf_img_obj = cls.get_tf_img_obj(obj)
xy_img = np.moveaxis(np.array(np.indices((512, 512))), 0, -1)[:, :, ::-1]
local_coord_img = tf_img_obj.inverse(xy_img.reshape(-1, 2)).reshape(
xy_img.shape
)
obj_local_coords = local_coord_img[obj_mask]
# furthest point sampling
init_idx = rng.choice(len(obj_local_coords))
obj_local_kps = farthest_point_sampling(obj_local_coords, n_kps, init_idx)
small_shift = rng.uniform(0, 1, size=obj_local_kps.shape)
obj_local_kps += small_shift
local_keypoint_map[name] = obj_local_kps
return cls(local_keypoint_map=local_keypoint_map, **kwargs)
@staticmethod
def get_tf_img(pose: Sequence):
pos = pose[:2]
rot = pose[2]
tf_img_obj = st.AffineTransform(translation=pos, rotation=rot)
return tf_img_obj
@classmethod
def get_tf_img_obj(cls, obj: pymunk.Body):
pose = tuple(obj.position) + (obj.angle,)
return cls.get_tf_img(pose)
def get_keypoints_global(
self, pose_map: Dict[set, Union[Sequence, pymunk.Body]], is_obj=False
):
kp_map = dict()
for key, value in pose_map.items():
if is_obj:
tf_img_obj = self.get_tf_img_obj(value)
else:
tf_img_obj = self.get_tf_img(value)
kp_local = self.local_keypoint_map[key]
kp_global = tf_img_obj(kp_local)
kp_map[key] = kp_global
return kp_map
def draw_keypoints(self, img, kps_map, radius=1):
scale = np.array(img.shape[:2]) / np.array([512, 512])
for key, value in kps_map.items():
color = self.color_map[key].tolist()
coords = (value * scale).astype(np.int32)
for coord in coords:
cv2.circle(img, coord, radius=radius, color=color, thickness=-1)
return img
def draw_keypoints_pose(self, img, pose_map, is_obj=False, **kwargs):
kp_map = self.get_keypoints_global(pose_map, is_obj=is_obj)
return self.draw_keypoints(img, kps_map=kp_map, **kwargs)
class DrawOptions(pymunk.SpaceDebugDrawOptions):
def __init__(self, surface: pygame.Surface) -> None:
"""Draw a pymunk.Space on a pygame.Surface object.
Typical usage::
>>> import pymunk
>>> surface = pygame.Surface((10,10))
>>> space = pymunk.Space()
>>> options = pymunk.pygame_util.DrawOptions(surface)
>>> space.debug_draw(options)
You can control the color of a shape by setting shape.color to the color
you want it drawn in::
>>> c = pymunk.Circle(None, 10)
>>> c.color = pygame.Color("pink")
See pygame_util.demo.py for a full example
Since pygame uses a coordinate system where y points down (in contrast
to many other cases), you either have to make the physics simulation
with Pymunk also behave in that way, or flip everything when you draw.
The easiest is probably to just make the simulation behave the same
way as Pygame does. In that way all coordinates used are in the same
orientation and easy to reason about::
>>> space = pymunk.Space()
>>> space.gravity = (0, -1000)
>>> body = pymunk.Body()
>>> body.position = (0, 0) # will be positioned in the top left corner
>>> space.debug_draw(options)
To flip the drawing its possible to set the module property
:py:data:`positive_y_is_up` to True. Then the pygame drawing will flip
the simulation upside down before drawing::
>>> positive_y_is_up = True
>>> body = pymunk.Body()
>>> body.position = (0, 0)
>>> # Body will be position in bottom left corner
:Parameters:
surface : pygame.Surface
Surface that the objects will be drawn on
"""
self.surface = surface
super(DrawOptions, self).__init__()
def draw_circle(
self,
pos: Vec2d,
angle: float,
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, fill_color.as_int(), p, round(radius), 0)
pygame.draw.circle(
self.surface, light_color(fill_color).as_int(), p, round(radius - 4), 0
)
circle_edge = pos + Vec2d(radius, 0).rotated(angle)
p2 = to_pygame(circle_edge, self.surface)
line_r = 2 if radius > 20 else 1
# pygame.draw.lines(self.surface, outline_color.as_int(), False, [p, p2], line_r)
def draw_segment(self, a: Vec2d, b: Vec2d, color: SpaceDebugColor) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
pygame.draw.aalines(self.surface, color.as_int(), False, [p1, p2])
def draw_fat_segment(
self,
a: Tuple[float, float],
b: Tuple[float, float],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
r = round(max(1, radius * 2))
pygame.draw.lines(self.surface, fill_color.as_int(), False, [p1, p2], r)
if r > 2:
orthog = [abs(p2[1] - p1[1]), abs(p2[0] - p1[0])]
if orthog[0] == 0 and orthog[1] == 0:
return
scale = radius / (orthog[0] * orthog[0] + orthog[1] * orthog[1]) ** 0.5
orthog[0] = round(orthog[0] * scale)
orthog[1] = round(orthog[1] * scale)
points = [
(p1[0] - orthog[0], p1[1] - orthog[1]),
(p1[0] + orthog[0], p1[1] + orthog[1]),
(p2[0] + orthog[0], p2[1] + orthog[1]),
(p2[0] - orthog[0], p2[1] - orthog[1]),
]
pygame.draw.polygon(self.surface, fill_color.as_int(), points)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p1[0]), round(p1[1])),
round(radius),
)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p2[0]), round(p2[1])),
round(radius),
)
def draw_polygon(
self,
verts: Sequence[Tuple[float, float]],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
ps = [to_pygame(v, self.surface) for v in verts]
ps += [ps[0]]
radius = 2
pygame.draw.polygon(self.surface, light_color(fill_color).as_int(), ps)
if radius > 0:
for i in range(len(verts)):
a = verts[i]
b = verts[(i + 1) % len(verts)]
self.draw_fat_segment(a, b, radius, fill_color, fill_color)
def draw_dot(
self, size: float, pos: Tuple[float, float], color: SpaceDebugColor
) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, color.as_int(), p, round(size), 0)
def get_mouse_pos(surface: pygame.Surface) -> Tuple[int, int]:
"""Get position of the mouse pointer in pymunk coordinates."""
p = pygame.mouse.get_pos()
return from_pygame(p, surface)
def to_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pymunk coordinates to pygame surface
local coordinates.
Note that in case positive_y_is_up is False, this function won't actually do
anything except converting the point to integers.
"""
if positive_y_is_up:
return round(p[0]), surface.get_height() - round(p[1])
else:
return round(p[0]), round(p[1])
def from_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pygame surface local coordinates to
pymunk coordinates
"""
return to_pygame(p, surface)
def light_color(color: SpaceDebugColor):
color = np.minimum(
1.2 * np.float32([color.r, color.g, color.b, color.a]), np.float32([255])
)
color = SpaceDebugColor(r=color[0], g=color[1], b=color[2], a=color[3])
return color
def pymunk_to_shapely(body, shapes):
geoms = list()
for shape in shapes:
if isinstance(shape, pymunk.shapes.Poly):
verts = [body.local_to_world(v) for v in shape.get_vertices()]
verts += [verts[0]]
geoms.append(sg.Polygon(verts))
else:
raise RuntimeError(f"Unsupported shape type {type(shape)}")
geom = sg.MultiPolygon(geoms)
return geom
class PushTEnv(gym.Env):
metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 10}
reward_range = (0.0, 1.0)
def __init__(
self,
legacy=False,
block_cog=None,
damping=None,
render_action=True,
render_size=224,
reset_to_state=None,
):
self._seed = None
self.seed()
self.window_size = ws = 512 # The size of the PyGame window
self.render_size = render_size
self.sim_hz = 100
# Local controller params.
self.k_p, self.k_v = 100, 20 # PD control.z
self.control_hz = self.metadata["video.frames_per_second"]
# legcay set_state for data compatibility
self.legacy = legacy
# agent_pos, block_pos, block_angle
self.observation_space = spaces.Box(
low=np.array([0, 0, 0, 0, 0], dtype=np.float64),
high=np.array([ws, ws, ws, ws, np.pi * 2], dtype=np.float64),
shape=(5,),
dtype=np.float64,
)
# positional goal for agent
self.action_space = spaces.Box(
low=np.array([0, 0], dtype=np.float64),
high=np.array([ws, ws], dtype=np.float64),
shape=(2,),
dtype=np.float64,
)
self.block_cog = block_cog
self.damping = damping
self.render_action = render_action
"""
If human-rendering is used, `self.window` will be a reference
to the window that we draw to. `self.clock` will be a clock that is used
to ensure that the environment is rendered at the correct framerate in
human-mode. They will remain `None` until human-mode is used for the
first time.
"""
self.window = None
self.clock = None
self.screen = None
self.space = None
self.teleop = None
self.render_buffer = None
self.latest_action = None
self.reset_to_state = reset_to_state
self.coverage_arr = []
def reset(self):
seed = self._seed
self._setup()
if self.block_cog is not None:
self.block.center_of_gravity = self.block_cog
if self.damping is not None:
self.space.damping = self.damping
# use legacy RandomState for compatibility
state = self.reset_to_state
if state is None:
rs = np.random.RandomState(seed=seed)
state = np.array(
[
rs.randint(50, 450),
rs.randint(50, 450),
rs.randint(100, 400),
rs.randint(100, 400),
rs.randn() * 2 * np.pi - np.pi,
]
)
self._set_state(state)
self.coverage_arr = []
observation = self._get_obs()
return observation
def step(self, action):
dt = 1.0 / self.sim_hz
self.n_contact_points = 0
n_steps = self.sim_hz // self.control_hz
if action is not None:
self.latest_action = action
for i in range(n_steps):
# Step PD control.
# self.agent.velocity = self.k_p * (act - self.agent.position) # P control works too.
acceleration = self.k_p * (action - self.agent.position) + self.k_v * (
Vec2d(0, 0) - self.agent.velocity
)
self.agent.velocity += acceleration * dt
# Step physics.
self.space.step(dt)
# compute reward
goal_body = self._get_goal_pose_body(self.goal_pose)
goal_geom = pymunk_to_shapely(goal_body, self.block.shapes)
block_geom = pymunk_to_shapely(self.block, self.block.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage = intersection_area / goal_area
reward = np.clip(coverage / self.success_threshold, 0, 1)
done = False # coverage > self.success_threshold
self.coverage_arr.append(coverage)
observation = self._get_obs()
info = self._get_info()
return observation, reward, done, info
def render(self, mode):
return self._render_frame(mode)
def teleop_agent(self):
TeleopAgent = collections.namedtuple("TeleopAgent", ["act"])
def act(obs):
act = None
mouse_position = pymunk.pygame_util.from_pygame(
Vec2d(*pygame.mouse.get_pos()), self.screen
)
if self.teleop or (mouse_position - self.agent.position).length < 30:
self.teleop = True
act = mouse_position
return act
return TeleopAgent(act)
def _get_obs(self):
obs = np.array(
tuple(self.agent.position)
+ tuple(self.block.position)
+ (self.block.angle % (2 * np.pi),)
)
return obs
def _get_goal_pose_body(self, pose):
mass = 1
inertia = pymunk.moment_for_box(mass, (50, 100))
body = pymunk.Body(mass, inertia)
# preserving the legacy assignment order for compatibility
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
body.position = pose[:2].tolist()
body.angle = pose[2]
return body
def _get_info(self):
n_steps = self.sim_hz // self.control_hz
n_contact_points_per_step = int(np.ceil(self.n_contact_points / n_steps))
info = {
"pos_agent": np.array(self.agent.position),
"vel_agent": np.array(self.agent.velocity),
"block_pose": np.array(list(self.block.position) + [self.block.angle]),
"goal_pose": self.goal_pose,
"n_contacts": n_contact_points_per_step,
}
return info
def _render_frame(self, mode):
if self.window is None and mode == "human":
pygame.init()
pygame.display.init()
self.window = pygame.display.set_mode((self.window_size, self.window_size))
if self.clock is None and mode == "human":
self.clock = pygame.time.Clock()
canvas = pygame.Surface((self.window_size, self.window_size))
canvas.fill((255, 255, 255))
self.screen = canvas
draw_options = DrawOptions(canvas)
# Draw goal pose.
goal_body = self._get_goal_pose_body(self.goal_pose)
for shape in self.block.shapes:
goal_points = [
pymunk.pygame_util.to_pygame(
goal_body.local_to_world(v), draw_options.surface
)
for v in shape.get_vertices()
]
goal_points += [goal_points[0]]
pygame.draw.polygon(canvas, self.goal_color, goal_points)
# Draw agent and block.
self.space.debug_draw(draw_options)
if mode == "human":
# The following line copies our drawings from `canvas` to the visible window
self.window.blit(canvas, canvas.get_rect())
pygame.event.pump()
pygame.display.update()
# the clock is already ticked during in step for "human"
img = np.transpose(np.array(pygame.surfarray.pixels3d(canvas)), axes=(1, 0, 2))
img = cv2.resize(img, (self.render_size, self.render_size))
if self.render_action:
if self.render_action and (self.latest_action is not None):
action = np.array(self.latest_action)
coord = (action / 512 * 96).astype(np.int32)
marker_size = int(8 / 96 * self.render_size)
thickness = int(1 / 96 * self.render_size)
cv2.drawMarker(
img,
coord,
color=(255, 0, 0),
markerType=cv2.MARKER_CROSS,
markerSize=marker_size,
thickness=thickness,
)
return img
def close(self):
if self.window is not None:
pygame.display.quit()
pygame.quit()
def seed(self, seed=None):
if seed is None:
seed = np.random.randint(0, 25536)
self._seed = seed
self.np_random = np.random.default_rng(seed)
def _handle_collision(self, arbiter, space, data):
self.n_contact_points += len(arbiter.contact_point_set.points)
def _set_state(self, state):
if isinstance(state, np.ndarray):
state = state.tolist()
pos_agent = state[:2]
pos_block = state[2:4]
rot_block = state[4]
self.agent.position = pos_agent
# setting angle rotates with respect to center of mass
# therefore will modify the geometric position
# if not the same as CoM
# therefore should be modified first.
if self.legacy:
# for compatibility with legacy data
self.block.position = pos_block
self.block.angle = rot_block
else:
self.block.angle = rot_block
self.block.position = pos_block
# Run physics to take effect
self.space.step(1.0 / self.sim_hz)
def _set_state_local(self, state_local):
agent_pos_local = state_local[:2]
block_pose_local = state_local[2:]
tf_img_obj = st.AffineTransform(
translation=self.goal_pose[:2], rotation=self.goal_pose[2]
)
tf_obj_new = st.AffineTransform(
translation=block_pose_local[:2], rotation=block_pose_local[2]
)
tf_img_new = st.AffineTransform(matrix=tf_img_obj.params @ tf_obj_new.params)
agent_pos_new = tf_img_new(agent_pos_local)
new_state = np.array(
list(agent_pos_new[0])
+ list(tf_img_new.translation)
+ [tf_img_new.rotation]
)
self._set_state(new_state)
return new_state
def set_task_goal(self, goal):
self.goal_pose = goal
def _setup(self):
self.space = pymunk.Space()
self.space.gravity = 0, 0
self.space.damping = 0
self.teleop = False
self.render_buffer = list()
# Add walls.
walls = [
self._add_segment((5, 506), (5, 5), 2),
self._add_segment((5, 5), (506, 5), 2),
self._add_segment((506, 5), (506, 506), 2),
self._add_segment((5, 506), (506, 506), 2),
]
self.space.add(*walls)
# Add agent, block, and goal zone.
self.agent = self.add_circle((256, 400), 15)
self.block = self.add_tee((256, 300), 0)
self.goal_color = pygame.Color("LightGreen")
self.goal_pose = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
# Add collision handling
self.collision_handeler = self.space.add_collision_handler(0, 0)
self.collision_handeler.post_solve = self._handle_collision
self.n_contact_points = 0
self.max_score = 50 * 100
self.success_threshold = 0.95 # 95% coverage.
def _add_segment(self, a, b, radius):
shape = pymunk.Segment(self.space.static_body, a, b, radius)
shape.color = pygame.Color(
"LightGray"
) # https://htmlcolorcodes.com/color-names
return shape
def add_circle(self, position, radius):
body = pymunk.Body(body_type=pymunk.Body.KINEMATIC)
body.position = position
body.friction = 1
shape = pymunk.Circle(body, radius)
shape.color = pygame.Color("RoyalBlue")
self.space.add(body, shape)
return body
def add_box(self, position, height, width):
mass = 1
inertia = pymunk.moment_for_box(mass, (height, width))
body = pymunk.Body(mass, inertia)
body.position = position
shape = pymunk.Poly.create_box(body, (height, width))
shape.color = pygame.Color("LightSlateGray")
self.space.add(body, shape)
return body
def add_tee(
self,
position,
angle,
scale=30,
color="LightSlateGray",
mask=pymunk.ShapeFilter.ALL_MASKS(),
):
mass = 1
length = 4
vertices1 = [
(-length * scale / 2, scale),
(length * scale / 2, scale),
(length * scale / 2, 0),
(-length * scale / 2, 0),
]
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
vertices2 = [
(-scale / 2, scale),
(-scale / 2, length * scale),
(scale / 2, length * scale),
(scale / 2, scale),
]
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
body = pymunk.Body(mass, inertia1 + inertia2)
shape1 = pymunk.Poly(body, vertices1)
shape2 = pymunk.Poly(body, vertices2)
shape1.color = pygame.Color(color)
shape2.color = pygame.Color(color)
shape1.filter = pymunk.ShapeFilter(mask=mask)
shape2.filter = pymunk.ShapeFilter(mask=mask)
body.center_of_gravity = (
shape1.center_of_gravity + shape2.center_of_gravity
) / 2
body.position = position
body.angle = angle
body.friction = 1
self.space.add(body, shape1, shape2)
return body
class PymunkKeypointManager:
def __init__(
self,
local_keypoint_map: Dict[str, np.ndarray],
color_map: Optional[Dict[str, np.ndarray]] = None,
):
"""
local_keypoint_map:
"<attribute_name>": (N,2) floats in object local coordinate
"""
if color_map is None:
cmap = cm.get_cmap("tab10")
color_map = dict()
for i, key in enumerate(local_keypoint_map.keys()):
color_map[key] = (np.array(cmap.colors[i]) * 255).astype(np.uint8)
self.local_keypoint_map = local_keypoint_map
self.color_map = color_map
@property
def kwargs(self):
return {
"local_keypoint_map": self.local_keypoint_map,
"color_map": self.color_map,
}
@classmethod
def create_from_pusht_env(cls, env, n_block_kps=9, n_agent_kps=3, seed=0, **kwargs):
rng = np.random.default_rng(seed=seed)
local_keypoint_map = dict()
for name in ["block", "agent"]:
self = env
self.space = pymunk.Space()
if name == "agent":
self.agent = obj = self.add_circle((256, 400), 15)
n_kps = n_agent_kps
else:
self.block = obj = self.add_tee((256, 300), 0)
n_kps = n_block_kps
self.screen = pygame.Surface((512, 512))
self.screen.fill(pygame.Color("white"))
draw_options = DrawOptions(self.screen)
self.space.debug_draw(draw_options)
# pygame.display.flip()
img = np.uint8(pygame.surfarray.array3d(self.screen).transpose(1, 0, 2))
obj_mask = (img != np.array([255, 255, 255], dtype=np.uint8)).any(axis=-1)
tf_img_obj = cls.get_tf_img_obj(obj)
xy_img = np.moveaxis(np.array(np.indices((512, 512))), 0, -1)[:, :, ::-1]
local_coord_img = tf_img_obj.inverse(xy_img.reshape(-1, 2)).reshape(
xy_img.shape
)
obj_local_coords = local_coord_img[obj_mask]
# furthest point sampling
init_idx = rng.choice(len(obj_local_coords))
obj_local_kps = farthest_point_sampling(obj_local_coords, n_kps, init_idx)
small_shift = rng.uniform(0, 1, size=obj_local_kps.shape)
obj_local_kps += small_shift
local_keypoint_map[name] = obj_local_kps
return cls(local_keypoint_map=local_keypoint_map, **kwargs)
@staticmethod
def get_tf_img(pose: Sequence):
pos = pose[:2]
rot = pose[2]
tf_img_obj = st.AffineTransform(translation=pos, rotation=rot)
return tf_img_obj
@classmethod
def get_tf_img_obj(cls, obj: pymunk.Body):
pose = tuple(obj.position) + (obj.angle,)
return cls.get_tf_img(pose)
def get_keypoints_global(
self, pose_map: Dict[set, Union[Sequence, pymunk.Body]], is_obj=False
):
kp_map = dict()
for key, value in pose_map.items():
if is_obj:
tf_img_obj = self.get_tf_img_obj(value)
else:
tf_img_obj = self.get_tf_img(value)
kp_local = self.local_keypoint_map[key]
kp_global = tf_img_obj(kp_local)
kp_map[key] = kp_global
return kp_map
def draw_keypoints(self, img, kps_map, radius=1):
scale = np.array(img.shape[:2]) / np.array([512, 512])
for key, value in kps_map.items():
color = self.color_map[key].tolist()
coords = (value * scale).astype(np.int32)
for coord in coords:
cv2.circle(img, coord, radius=radius, color=color, thickness=-1)
return img
def draw_keypoints_pose(self, img, pose_map, is_obj=False, **kwargs):
kp_map = self.get_keypoints_global(pose_map, is_obj=is_obj)
return self.draw_keypoints(img, kps_map=kp_map, **kwargs)
class PushTKeypointsEnv(PushTEnv):
def __init__(
self,
legacy=False,
block_cog=None,
damping=None,
render_size=224,
keypoint_visible_rate=1.0,
agent_keypoints=False,
draw_keypoints=False,
reset_to_state=None,
render_action=False,
local_keypoint_map: Dict[str, np.ndarray] = None,
color_map: Optional[Dict[str, np.ndarray]] = None,
):
super().__init__(
legacy=legacy,
block_cog=block_cog,
damping=damping,
render_size=render_size,
reset_to_state=reset_to_state,
render_action=render_action,
)
ws = self.window_size
if local_keypoint_map is None:
# create default keypoint definition
kp_kwargs = self.genenerate_keypoint_manager_params()
local_keypoint_map = kp_kwargs["local_keypoint_map"]
color_map = kp_kwargs["color_map"]
# create observation spaces
Dblockkps = np.prod(local_keypoint_map["block"].shape)
Dagentkps = np.prod(local_keypoint_map["agent"].shape)
Dagentpos = 2
Do = Dblockkps
if agent_keypoints:
# blockkp + agnet_pos
Do += Dagentkps
else:
# blockkp + agnet_kp
Do += Dagentpos
# obs + obs_mask
Dobs = Do * 2
low = np.zeros((Dobs,), dtype=np.float64)
high = np.full_like(low, ws)
# mask range 0-1
high[Do:] = 1.0
# (block_kps+agent_kps, xy+confidence)
self.observation_space = spaces.Box(
low=low, high=high, shape=low.shape, dtype=np.float64
)
self.keypoint_visible_rate = keypoint_visible_rate
self.agent_keypoints = agent_keypoints
self.draw_keypoints = draw_keypoints
self.kp_manager = PymunkKeypointManager(
local_keypoint_map=local_keypoint_map, color_map=color_map
)
self.draw_kp_map = None
@classmethod
def genenerate_keypoint_manager_params(cls):
env = PushTEnv()
kp_manager = PymunkKeypointManager.create_from_pusht_env(env)
kp_kwargs = kp_manager.kwargs
return kp_kwargs
def _get_obs(self):
# get keypoints
obj_map = {"block": self.block}
if self.agent_keypoints:
obj_map["agent"] = self.agent
kp_map = self.kp_manager.get_keypoints_global(pose_map=obj_map, is_obj=True)
# python dict guerentee order of keys and values
kps = np.concatenate(list(kp_map.values()), axis=0)
# select keypoints to drop
n_kps = kps.shape[0]
visible_kps = self.np_random.random(size=(n_kps,)) < self.keypoint_visible_rate
kps_mask = np.repeat(visible_kps[:, None], 2, axis=1)
# save keypoints for rendering
vis_kps = kps.copy()
vis_kps[~visible_kps] = 0
draw_kp_map = {"block": vis_kps[: len(kp_map["block"])]}
if self.agent_keypoints:
draw_kp_map["agent"] = vis_kps[len(kp_map["block"]) :]
self.draw_kp_map = draw_kp_map
# construct obs
obs = kps.flatten()
obs_mask = kps_mask.flatten()
if not self.agent_keypoints:
# passing agent position when keypoints are not available
agent_pos = np.array(self.agent.position)
obs = np.concatenate([obs, agent_pos])
obs_mask = np.concatenate([obs_mask, np.ones((2,), dtype=bool)])
# obs, obs_mask
obs = np.concatenate([obs, obs_mask.astype(obs.dtype)], axis=0)
return obs
def _render_frame(self, mode):
img = super()._render_frame(mode)
if self.draw_keypoints:
self.kp_manager.draw_keypoints(
img, self.draw_kp_map, radius=int(img.shape[0] / 96)
)
return img
import zarr
from pathlib import Path
class Normalizer:
def __init__(self, data_directory, device="cuda", onehot_goals=False):
data_directory = Path(data_directory)
src_root = zarr.group(data_directory / "pusht_cchi_v7_replay.zarr")
# numpy backend
meta = dict()
for key, value in src_root["meta"].items():
if len(value.shape) == 0:
meta[key] = np.array(value)
else:
meta[key] = value[:]
keys = src_root["data"].keys()
data = dict()
for key in keys:
arr = src_root["data"][key]
data[key] = arr[:]
# meta['episode_ends'] = meta['episode_ends'][:int(meta['episode_ends'].shape[0]/4)]
# data['obs'] = data['obs'][:meta['episode_ends'][-1]]
# data['action'] = data['action'][:meta['episode_ends'][-1]]
observations = []
actions = []
masks = []
start = 0
agent_pos = data["state"][:, :2]
keypoint_obs = np.concatenate(
[data["keypoint"].reshape(data["keypoint"].shape[0], -1), agent_pos],
axis=-1,
)
for end in meta["episode_ends"]:
if (300 - (end - start)) <= 0:
print("too small capacity")
observations.append(
np.concatenate(
(keypoint_obs[start:end], np.zeros((300 - (end - start), 20)))
)
)
actions.append(
np.concatenate(
(data["action"][start:end], np.zeros((300 - (end - start), 2)))
)
)
masks.append(
np.concatenate(
(np.ones((end - start)), np.zeros((300 - (end - start))))
)
)
start = end
observations = np.array(observations)
actions = np.array(actions)
masks = np.array(masks)
self.observations_stats = self.get_data_stats(observations)
def get_data_stats(self, data):
data = data.reshape(-1, data.shape[-1])
stats = {"min": np.min(data, axis=0), "max": np.max(data, axis=0)}
return stats
def normalize_data(self, data, stats):
# nomalize to [0,1]
ndata = (data - stats["min"]) / (stats["max"] - stats["min"])
# normalize to [-1, 1]
ndata = ndata * 2 - 1
return ndata
def unnormalize_data(self, ndata, stats):
ndata = (ndata + 1) / 2
data = ndata * (stats["max"] - stats["min"]) + stats["min"]
return data
class PushWrapper(gym.Wrapper):
def __init__(self, env, id):
super(PushWrapper, self).__init__(env)
self.env = env
self.id = id
def reset(self, goal_idx=None):
print("reset env!!!!!")
obs = self.env.reset()
self.step_idx = 0
return_obs = self.env.render(mode="rgb_array")
return_obs = einops.rearrange(return_obs, "H W C -> 1 C H W") / 255.0 # 1 view
return return_obs
def step(self, action):
obs, reward, done, info = self.env.step(action)
info["image"] = self.env.render(mode="rgb_array")
info["all_completions_ids"] = []
if self.step_idx > 300:
done = True
else:
done = False
self.step_idx += 1
info["max_coverage"] = max(self.coverage_arr)
info["final_coverage"] = self.coverage_arr[-1]
return_obs = info["image"]
return_obs = einops.rearrange(return_obs, "H W C -> 1 C H W") / 255.0 # 1 view
return return_obs, reward, done, info