File size: 36,890 Bytes
393d3de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 |
# env import
import gym
import einops
from gym import spaces
from pymunk.space_debug_draw_options import SpaceDebugColor
from pymunk.vec2d import Vec2d
from typing import Tuple, Sequence, Dict, Union, Optional
import pygame
import pymunk
import numpy as np
import shapely.geometry as sg
import cv2
import skimage.transform as st
import pymunk.pygame_util
import collections
from matplotlib import cm
import torch
# @markdown ### **Environment**
# @markdown Defines a PyMunk-based Push-T environment `PushTEnv`.
# @markdown
# @markdown **Goal**: push the gray T-block into the green area.
# @markdown
# @markdown Adapted from [Implicit Behavior Cloning](https://implicitbc.github.io/)
positive_y_is_up: bool = False
"""Make increasing values of y point upwards.
When True::
y
^
| . (3, 3)
|
| . (2, 2)
|
+------ > x
When False::
+------ > x
|
| . (2, 2)
|
| . (3, 3)
v
y
"""
def farthest_point_sampling(points: np.ndarray, n_points: int, init_idx: int):
"""
Naive O(N^2)
"""
assert n_points >= 1
chosen_points = [points[init_idx]]
for _ in range(n_points - 1):
cpoints = np.array(chosen_points)
all_dists = np.linalg.norm(points[:, None, :] - cpoints[None, :, :], axis=-1)
min_dists = all_dists.min(axis=1)
next_idx = np.argmax(min_dists)
next_pt = points[next_idx]
chosen_points.append(next_pt)
result = np.array(chosen_points)
return result
class PymunkKeypointManager:
def __init__(
self,
local_keypoint_map: Dict[str, np.ndarray],
color_map: Optional[Dict[str, np.ndarray]] = None,
):
"""
local_keypoint_map:
"<attribute_name>": (N,2) floats in object local coordinate
"""
if color_map is None:
cmap = cm.get_cmap("tab10")
color_map = dict()
for i, key in enumerate(local_keypoint_map.keys()):
color_map[key] = (np.array(cmap.colors[i]) * 255).astype(np.uint8)
self.local_keypoint_map = local_keypoint_map
self.color_map = color_map
@property
def kwargs(self):
return {
"local_keypoint_map": self.local_keypoint_map,
"color_map": self.color_map,
}
@classmethod
def create_from_pusht_env(cls, env, n_block_kps=9, n_agent_kps=3, seed=0, **kwargs):
rng = np.random.default_rng(seed=seed)
local_keypoint_map = dict()
for name in ["block", "agent"]:
self = env
self.space = pymunk.Space()
if name == "agent":
self.agent = obj = self.add_circle((256, 400), 15)
n_kps = n_agent_kps
else:
self.block = obj = self.add_tee((256, 300), 0)
n_kps = n_block_kps
self.screen = pygame.Surface((512, 512))
self.screen.fill(pygame.Color("white"))
draw_options = DrawOptions(self.screen)
self.space.debug_draw(draw_options)
# pygame.display.flip()
img = np.uint8(pygame.surfarray.array3d(self.screen).transpose(1, 0, 2))
obj_mask = (img != np.array([255, 255, 255], dtype=np.uint8)).any(axis=-1)
tf_img_obj = cls.get_tf_img_obj(obj)
xy_img = np.moveaxis(np.array(np.indices((512, 512))), 0, -1)[:, :, ::-1]
local_coord_img = tf_img_obj.inverse(xy_img.reshape(-1, 2)).reshape(
xy_img.shape
)
obj_local_coords = local_coord_img[obj_mask]
# furthest point sampling
init_idx = rng.choice(len(obj_local_coords))
obj_local_kps = farthest_point_sampling(obj_local_coords, n_kps, init_idx)
small_shift = rng.uniform(0, 1, size=obj_local_kps.shape)
obj_local_kps += small_shift
local_keypoint_map[name] = obj_local_kps
return cls(local_keypoint_map=local_keypoint_map, **kwargs)
@staticmethod
def get_tf_img(pose: Sequence):
pos = pose[:2]
rot = pose[2]
tf_img_obj = st.AffineTransform(translation=pos, rotation=rot)
return tf_img_obj
@classmethod
def get_tf_img_obj(cls, obj: pymunk.Body):
pose = tuple(obj.position) + (obj.angle,)
return cls.get_tf_img(pose)
def get_keypoints_global(
self, pose_map: Dict[set, Union[Sequence, pymunk.Body]], is_obj=False
):
kp_map = dict()
for key, value in pose_map.items():
if is_obj:
tf_img_obj = self.get_tf_img_obj(value)
else:
tf_img_obj = self.get_tf_img(value)
kp_local = self.local_keypoint_map[key]
kp_global = tf_img_obj(kp_local)
kp_map[key] = kp_global
return kp_map
def draw_keypoints(self, img, kps_map, radius=1):
scale = np.array(img.shape[:2]) / np.array([512, 512])
for key, value in kps_map.items():
color = self.color_map[key].tolist()
coords = (value * scale).astype(np.int32)
for coord in coords:
cv2.circle(img, coord, radius=radius, color=color, thickness=-1)
return img
def draw_keypoints_pose(self, img, pose_map, is_obj=False, **kwargs):
kp_map = self.get_keypoints_global(pose_map, is_obj=is_obj)
return self.draw_keypoints(img, kps_map=kp_map, **kwargs)
class DrawOptions(pymunk.SpaceDebugDrawOptions):
def __init__(self, surface: pygame.Surface) -> None:
"""Draw a pymunk.Space on a pygame.Surface object.
Typical usage::
>>> import pymunk
>>> surface = pygame.Surface((10,10))
>>> space = pymunk.Space()
>>> options = pymunk.pygame_util.DrawOptions(surface)
>>> space.debug_draw(options)
You can control the color of a shape by setting shape.color to the color
you want it drawn in::
>>> c = pymunk.Circle(None, 10)
>>> c.color = pygame.Color("pink")
See pygame_util.demo.py for a full example
Since pygame uses a coordinate system where y points down (in contrast
to many other cases), you either have to make the physics simulation
with Pymunk also behave in that way, or flip everything when you draw.
The easiest is probably to just make the simulation behave the same
way as Pygame does. In that way all coordinates used are in the same
orientation and easy to reason about::
>>> space = pymunk.Space()
>>> space.gravity = (0, -1000)
>>> body = pymunk.Body()
>>> body.position = (0, 0) # will be positioned in the top left corner
>>> space.debug_draw(options)
To flip the drawing its possible to set the module property
:py:data:`positive_y_is_up` to True. Then the pygame drawing will flip
the simulation upside down before drawing::
>>> positive_y_is_up = True
>>> body = pymunk.Body()
>>> body.position = (0, 0)
>>> # Body will be position in bottom left corner
:Parameters:
surface : pygame.Surface
Surface that the objects will be drawn on
"""
self.surface = surface
super(DrawOptions, self).__init__()
def draw_circle(
self,
pos: Vec2d,
angle: float,
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, fill_color.as_int(), p, round(radius), 0)
pygame.draw.circle(
self.surface, light_color(fill_color).as_int(), p, round(radius - 4), 0
)
circle_edge = pos + Vec2d(radius, 0).rotated(angle)
p2 = to_pygame(circle_edge, self.surface)
line_r = 2 if radius > 20 else 1
# pygame.draw.lines(self.surface, outline_color.as_int(), False, [p, p2], line_r)
def draw_segment(self, a: Vec2d, b: Vec2d, color: SpaceDebugColor) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
pygame.draw.aalines(self.surface, color.as_int(), False, [p1, p2])
def draw_fat_segment(
self,
a: Tuple[float, float],
b: Tuple[float, float],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
r = round(max(1, radius * 2))
pygame.draw.lines(self.surface, fill_color.as_int(), False, [p1, p2], r)
if r > 2:
orthog = [abs(p2[1] - p1[1]), abs(p2[0] - p1[0])]
if orthog[0] == 0 and orthog[1] == 0:
return
scale = radius / (orthog[0] * orthog[0] + orthog[1] * orthog[1]) ** 0.5
orthog[0] = round(orthog[0] * scale)
orthog[1] = round(orthog[1] * scale)
points = [
(p1[0] - orthog[0], p1[1] - orthog[1]),
(p1[0] + orthog[0], p1[1] + orthog[1]),
(p2[0] + orthog[0], p2[1] + orthog[1]),
(p2[0] - orthog[0], p2[1] - orthog[1]),
]
pygame.draw.polygon(self.surface, fill_color.as_int(), points)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p1[0]), round(p1[1])),
round(radius),
)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p2[0]), round(p2[1])),
round(radius),
)
def draw_polygon(
self,
verts: Sequence[Tuple[float, float]],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
ps = [to_pygame(v, self.surface) for v in verts]
ps += [ps[0]]
radius = 2
pygame.draw.polygon(self.surface, light_color(fill_color).as_int(), ps)
if radius > 0:
for i in range(len(verts)):
a = verts[i]
b = verts[(i + 1) % len(verts)]
self.draw_fat_segment(a, b, radius, fill_color, fill_color)
def draw_dot(
self, size: float, pos: Tuple[float, float], color: SpaceDebugColor
) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, color.as_int(), p, round(size), 0)
def get_mouse_pos(surface: pygame.Surface) -> Tuple[int, int]:
"""Get position of the mouse pointer in pymunk coordinates."""
p = pygame.mouse.get_pos()
return from_pygame(p, surface)
def to_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pymunk coordinates to pygame surface
local coordinates.
Note that in case positive_y_is_up is False, this function won't actually do
anything except converting the point to integers.
"""
if positive_y_is_up:
return round(p[0]), surface.get_height() - round(p[1])
else:
return round(p[0]), round(p[1])
def from_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pygame surface local coordinates to
pymunk coordinates
"""
return to_pygame(p, surface)
def light_color(color: SpaceDebugColor):
color = np.minimum(
1.2 * np.float32([color.r, color.g, color.b, color.a]), np.float32([255])
)
color = SpaceDebugColor(r=color[0], g=color[1], b=color[2], a=color[3])
return color
def pymunk_to_shapely(body, shapes):
geoms = list()
for shape in shapes:
if isinstance(shape, pymunk.shapes.Poly):
verts = [body.local_to_world(v) for v in shape.get_vertices()]
verts += [verts[0]]
geoms.append(sg.Polygon(verts))
else:
raise RuntimeError(f"Unsupported shape type {type(shape)}")
geom = sg.MultiPolygon(geoms)
return geom
class PushTEnv(gym.Env):
metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 10}
reward_range = (0.0, 1.0)
def __init__(
self,
legacy=False,
block_cog=None,
damping=None,
render_action=True,
render_size=224,
reset_to_state=None,
):
self._seed = None
self.seed()
self.window_size = ws = 512 # The size of the PyGame window
self.render_size = render_size
self.sim_hz = 100
# Local controller params.
self.k_p, self.k_v = 100, 20 # PD control.z
self.control_hz = self.metadata["video.frames_per_second"]
# legcay set_state for data compatibility
self.legacy = legacy
# agent_pos, block_pos, block_angle
self.observation_space = spaces.Box(
low=np.array([0, 0, 0, 0, 0], dtype=np.float64),
high=np.array([ws, ws, ws, ws, np.pi * 2], dtype=np.float64),
shape=(5,),
dtype=np.float64,
)
# positional goal for agent
self.action_space = spaces.Box(
low=np.array([0, 0], dtype=np.float64),
high=np.array([ws, ws], dtype=np.float64),
shape=(2,),
dtype=np.float64,
)
self.block_cog = block_cog
self.damping = damping
self.render_action = render_action
"""
If human-rendering is used, `self.window` will be a reference
to the window that we draw to. `self.clock` will be a clock that is used
to ensure that the environment is rendered at the correct framerate in
human-mode. They will remain `None` until human-mode is used for the
first time.
"""
self.window = None
self.clock = None
self.screen = None
self.space = None
self.teleop = None
self.render_buffer = None
self.latest_action = None
self.reset_to_state = reset_to_state
self.coverage_arr = []
def reset(self):
seed = self._seed
self._setup()
if self.block_cog is not None:
self.block.center_of_gravity = self.block_cog
if self.damping is not None:
self.space.damping = self.damping
# use legacy RandomState for compatibility
state = self.reset_to_state
if state is None:
rs = np.random.RandomState(seed=seed)
state = np.array(
[
rs.randint(50, 450),
rs.randint(50, 450),
rs.randint(100, 400),
rs.randint(100, 400),
rs.randn() * 2 * np.pi - np.pi,
]
)
self._set_state(state)
self.coverage_arr = []
observation = self._get_obs()
return observation
def step(self, action):
dt = 1.0 / self.sim_hz
self.n_contact_points = 0
n_steps = self.sim_hz // self.control_hz
if action is not None:
self.latest_action = action
for i in range(n_steps):
# Step PD control.
# self.agent.velocity = self.k_p * (act - self.agent.position) # P control works too.
acceleration = self.k_p * (action - self.agent.position) + self.k_v * (
Vec2d(0, 0) - self.agent.velocity
)
self.agent.velocity += acceleration * dt
# Step physics.
self.space.step(dt)
# compute reward
goal_body = self._get_goal_pose_body(self.goal_pose)
goal_geom = pymunk_to_shapely(goal_body, self.block.shapes)
block_geom = pymunk_to_shapely(self.block, self.block.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage = intersection_area / goal_area
reward = np.clip(coverage / self.success_threshold, 0, 1)
done = False # coverage > self.success_threshold
self.coverage_arr.append(coverage)
observation = self._get_obs()
info = self._get_info()
return observation, reward, done, info
def render(self, mode):
return self._render_frame(mode)
def teleop_agent(self):
TeleopAgent = collections.namedtuple("TeleopAgent", ["act"])
def act(obs):
act = None
mouse_position = pymunk.pygame_util.from_pygame(
Vec2d(*pygame.mouse.get_pos()), self.screen
)
if self.teleop or (mouse_position - self.agent.position).length < 30:
self.teleop = True
act = mouse_position
return act
return TeleopAgent(act)
def _get_obs(self):
obs = np.array(
tuple(self.agent.position)
+ tuple(self.block.position)
+ (self.block.angle % (2 * np.pi),)
)
return obs
def _get_goal_pose_body(self, pose):
mass = 1
inertia = pymunk.moment_for_box(mass, (50, 100))
body = pymunk.Body(mass, inertia)
# preserving the legacy assignment order for compatibility
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
body.position = pose[:2].tolist()
body.angle = pose[2]
return body
def _get_info(self):
n_steps = self.sim_hz // self.control_hz
n_contact_points_per_step = int(np.ceil(self.n_contact_points / n_steps))
info = {
"pos_agent": np.array(self.agent.position),
"vel_agent": np.array(self.agent.velocity),
"block_pose": np.array(list(self.block.position) + [self.block.angle]),
"goal_pose": self.goal_pose,
"n_contacts": n_contact_points_per_step,
}
return info
def _render_frame(self, mode):
if self.window is None and mode == "human":
pygame.init()
pygame.display.init()
self.window = pygame.display.set_mode((self.window_size, self.window_size))
if self.clock is None and mode == "human":
self.clock = pygame.time.Clock()
canvas = pygame.Surface((self.window_size, self.window_size))
canvas.fill((255, 255, 255))
self.screen = canvas
draw_options = DrawOptions(canvas)
# Draw goal pose.
goal_body = self._get_goal_pose_body(self.goal_pose)
for shape in self.block.shapes:
goal_points = [
pymunk.pygame_util.to_pygame(
goal_body.local_to_world(v), draw_options.surface
)
for v in shape.get_vertices()
]
goal_points += [goal_points[0]]
pygame.draw.polygon(canvas, self.goal_color, goal_points)
# Draw agent and block.
self.space.debug_draw(draw_options)
if mode == "human":
# The following line copies our drawings from `canvas` to the visible window
self.window.blit(canvas, canvas.get_rect())
pygame.event.pump()
pygame.display.update()
# the clock is already ticked during in step for "human"
img = np.transpose(np.array(pygame.surfarray.pixels3d(canvas)), axes=(1, 0, 2))
img = cv2.resize(img, (self.render_size, self.render_size))
if self.render_action:
if self.render_action and (self.latest_action is not None):
action = np.array(self.latest_action)
coord = (action / 512 * 96).astype(np.int32)
marker_size = int(8 / 96 * self.render_size)
thickness = int(1 / 96 * self.render_size)
cv2.drawMarker(
img,
coord,
color=(255, 0, 0),
markerType=cv2.MARKER_CROSS,
markerSize=marker_size,
thickness=thickness,
)
return img
def close(self):
if self.window is not None:
pygame.display.quit()
pygame.quit()
def seed(self, seed=None):
if seed is None:
seed = np.random.randint(0, 25536)
self._seed = seed
self.np_random = np.random.default_rng(seed)
def _handle_collision(self, arbiter, space, data):
self.n_contact_points += len(arbiter.contact_point_set.points)
def _set_state(self, state):
if isinstance(state, np.ndarray):
state = state.tolist()
pos_agent = state[:2]
pos_block = state[2:4]
rot_block = state[4]
self.agent.position = pos_agent
# setting angle rotates with respect to center of mass
# therefore will modify the geometric position
# if not the same as CoM
# therefore should be modified first.
if self.legacy:
# for compatibility with legacy data
self.block.position = pos_block
self.block.angle = rot_block
else:
self.block.angle = rot_block
self.block.position = pos_block
# Run physics to take effect
self.space.step(1.0 / self.sim_hz)
def _set_state_local(self, state_local):
agent_pos_local = state_local[:2]
block_pose_local = state_local[2:]
tf_img_obj = st.AffineTransform(
translation=self.goal_pose[:2], rotation=self.goal_pose[2]
)
tf_obj_new = st.AffineTransform(
translation=block_pose_local[:2], rotation=block_pose_local[2]
)
tf_img_new = st.AffineTransform(matrix=tf_img_obj.params @ tf_obj_new.params)
agent_pos_new = tf_img_new(agent_pos_local)
new_state = np.array(
list(agent_pos_new[0])
+ list(tf_img_new.translation)
+ [tf_img_new.rotation]
)
self._set_state(new_state)
return new_state
def set_task_goal(self, goal):
self.goal_pose = goal
def _setup(self):
self.space = pymunk.Space()
self.space.gravity = 0, 0
self.space.damping = 0
self.teleop = False
self.render_buffer = list()
# Add walls.
walls = [
self._add_segment((5, 506), (5, 5), 2),
self._add_segment((5, 5), (506, 5), 2),
self._add_segment((506, 5), (506, 506), 2),
self._add_segment((5, 506), (506, 506), 2),
]
self.space.add(*walls)
# Add agent, block, and goal zone.
self.agent = self.add_circle((256, 400), 15)
self.block = self.add_tee((256, 300), 0)
self.goal_color = pygame.Color("LightGreen")
self.goal_pose = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
# Add collision handling
self.collision_handeler = self.space.add_collision_handler(0, 0)
self.collision_handeler.post_solve = self._handle_collision
self.n_contact_points = 0
self.max_score = 50 * 100
self.success_threshold = 0.95 # 95% coverage.
def _add_segment(self, a, b, radius):
shape = pymunk.Segment(self.space.static_body, a, b, radius)
shape.color = pygame.Color(
"LightGray"
) # https://htmlcolorcodes.com/color-names
return shape
def add_circle(self, position, radius):
body = pymunk.Body(body_type=pymunk.Body.KINEMATIC)
body.position = position
body.friction = 1
shape = pymunk.Circle(body, radius)
shape.color = pygame.Color("RoyalBlue")
self.space.add(body, shape)
return body
def add_box(self, position, height, width):
mass = 1
inertia = pymunk.moment_for_box(mass, (height, width))
body = pymunk.Body(mass, inertia)
body.position = position
shape = pymunk.Poly.create_box(body, (height, width))
shape.color = pygame.Color("LightSlateGray")
self.space.add(body, shape)
return body
def add_tee(
self,
position,
angle,
scale=30,
color="LightSlateGray",
mask=pymunk.ShapeFilter.ALL_MASKS(),
):
mass = 1
length = 4
vertices1 = [
(-length * scale / 2, scale),
(length * scale / 2, scale),
(length * scale / 2, 0),
(-length * scale / 2, 0),
]
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
vertices2 = [
(-scale / 2, scale),
(-scale / 2, length * scale),
(scale / 2, length * scale),
(scale / 2, scale),
]
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
body = pymunk.Body(mass, inertia1 + inertia2)
shape1 = pymunk.Poly(body, vertices1)
shape2 = pymunk.Poly(body, vertices2)
shape1.color = pygame.Color(color)
shape2.color = pygame.Color(color)
shape1.filter = pymunk.ShapeFilter(mask=mask)
shape2.filter = pymunk.ShapeFilter(mask=mask)
body.center_of_gravity = (
shape1.center_of_gravity + shape2.center_of_gravity
) / 2
body.position = position
body.angle = angle
body.friction = 1
self.space.add(body, shape1, shape2)
return body
class PymunkKeypointManager:
def __init__(
self,
local_keypoint_map: Dict[str, np.ndarray],
color_map: Optional[Dict[str, np.ndarray]] = None,
):
"""
local_keypoint_map:
"<attribute_name>": (N,2) floats in object local coordinate
"""
if color_map is None:
cmap = cm.get_cmap("tab10")
color_map = dict()
for i, key in enumerate(local_keypoint_map.keys()):
color_map[key] = (np.array(cmap.colors[i]) * 255).astype(np.uint8)
self.local_keypoint_map = local_keypoint_map
self.color_map = color_map
@property
def kwargs(self):
return {
"local_keypoint_map": self.local_keypoint_map,
"color_map": self.color_map,
}
@classmethod
def create_from_pusht_env(cls, env, n_block_kps=9, n_agent_kps=3, seed=0, **kwargs):
rng = np.random.default_rng(seed=seed)
local_keypoint_map = dict()
for name in ["block", "agent"]:
self = env
self.space = pymunk.Space()
if name == "agent":
self.agent = obj = self.add_circle((256, 400), 15)
n_kps = n_agent_kps
else:
self.block = obj = self.add_tee((256, 300), 0)
n_kps = n_block_kps
self.screen = pygame.Surface((512, 512))
self.screen.fill(pygame.Color("white"))
draw_options = DrawOptions(self.screen)
self.space.debug_draw(draw_options)
# pygame.display.flip()
img = np.uint8(pygame.surfarray.array3d(self.screen).transpose(1, 0, 2))
obj_mask = (img != np.array([255, 255, 255], dtype=np.uint8)).any(axis=-1)
tf_img_obj = cls.get_tf_img_obj(obj)
xy_img = np.moveaxis(np.array(np.indices((512, 512))), 0, -1)[:, :, ::-1]
local_coord_img = tf_img_obj.inverse(xy_img.reshape(-1, 2)).reshape(
xy_img.shape
)
obj_local_coords = local_coord_img[obj_mask]
# furthest point sampling
init_idx = rng.choice(len(obj_local_coords))
obj_local_kps = farthest_point_sampling(obj_local_coords, n_kps, init_idx)
small_shift = rng.uniform(0, 1, size=obj_local_kps.shape)
obj_local_kps += small_shift
local_keypoint_map[name] = obj_local_kps
return cls(local_keypoint_map=local_keypoint_map, **kwargs)
@staticmethod
def get_tf_img(pose: Sequence):
pos = pose[:2]
rot = pose[2]
tf_img_obj = st.AffineTransform(translation=pos, rotation=rot)
return tf_img_obj
@classmethod
def get_tf_img_obj(cls, obj: pymunk.Body):
pose = tuple(obj.position) + (obj.angle,)
return cls.get_tf_img(pose)
def get_keypoints_global(
self, pose_map: Dict[set, Union[Sequence, pymunk.Body]], is_obj=False
):
kp_map = dict()
for key, value in pose_map.items():
if is_obj:
tf_img_obj = self.get_tf_img_obj(value)
else:
tf_img_obj = self.get_tf_img(value)
kp_local = self.local_keypoint_map[key]
kp_global = tf_img_obj(kp_local)
kp_map[key] = kp_global
return kp_map
def draw_keypoints(self, img, kps_map, radius=1):
scale = np.array(img.shape[:2]) / np.array([512, 512])
for key, value in kps_map.items():
color = self.color_map[key].tolist()
coords = (value * scale).astype(np.int32)
for coord in coords:
cv2.circle(img, coord, radius=radius, color=color, thickness=-1)
return img
def draw_keypoints_pose(self, img, pose_map, is_obj=False, **kwargs):
kp_map = self.get_keypoints_global(pose_map, is_obj=is_obj)
return self.draw_keypoints(img, kps_map=kp_map, **kwargs)
class PushTKeypointsEnv(PushTEnv):
def __init__(
self,
legacy=False,
block_cog=None,
damping=None,
render_size=224,
keypoint_visible_rate=1.0,
agent_keypoints=False,
draw_keypoints=False,
reset_to_state=None,
render_action=False,
local_keypoint_map: Dict[str, np.ndarray] = None,
color_map: Optional[Dict[str, np.ndarray]] = None,
):
super().__init__(
legacy=legacy,
block_cog=block_cog,
damping=damping,
render_size=render_size,
reset_to_state=reset_to_state,
render_action=render_action,
)
ws = self.window_size
if local_keypoint_map is None:
# create default keypoint definition
kp_kwargs = self.genenerate_keypoint_manager_params()
local_keypoint_map = kp_kwargs["local_keypoint_map"]
color_map = kp_kwargs["color_map"]
# create observation spaces
Dblockkps = np.prod(local_keypoint_map["block"].shape)
Dagentkps = np.prod(local_keypoint_map["agent"].shape)
Dagentpos = 2
Do = Dblockkps
if agent_keypoints:
# blockkp + agnet_pos
Do += Dagentkps
else:
# blockkp + agnet_kp
Do += Dagentpos
# obs + obs_mask
Dobs = Do * 2
low = np.zeros((Dobs,), dtype=np.float64)
high = np.full_like(low, ws)
# mask range 0-1
high[Do:] = 1.0
# (block_kps+agent_kps, xy+confidence)
self.observation_space = spaces.Box(
low=low, high=high, shape=low.shape, dtype=np.float64
)
self.keypoint_visible_rate = keypoint_visible_rate
self.agent_keypoints = agent_keypoints
self.draw_keypoints = draw_keypoints
self.kp_manager = PymunkKeypointManager(
local_keypoint_map=local_keypoint_map, color_map=color_map
)
self.draw_kp_map = None
@classmethod
def genenerate_keypoint_manager_params(cls):
env = PushTEnv()
kp_manager = PymunkKeypointManager.create_from_pusht_env(env)
kp_kwargs = kp_manager.kwargs
return kp_kwargs
def _get_obs(self):
# get keypoints
obj_map = {"block": self.block}
if self.agent_keypoints:
obj_map["agent"] = self.agent
kp_map = self.kp_manager.get_keypoints_global(pose_map=obj_map, is_obj=True)
# python dict guerentee order of keys and values
kps = np.concatenate(list(kp_map.values()), axis=0)
# select keypoints to drop
n_kps = kps.shape[0]
visible_kps = self.np_random.random(size=(n_kps,)) < self.keypoint_visible_rate
kps_mask = np.repeat(visible_kps[:, None], 2, axis=1)
# save keypoints for rendering
vis_kps = kps.copy()
vis_kps[~visible_kps] = 0
draw_kp_map = {"block": vis_kps[: len(kp_map["block"])]}
if self.agent_keypoints:
draw_kp_map["agent"] = vis_kps[len(kp_map["block"]) :]
self.draw_kp_map = draw_kp_map
# construct obs
obs = kps.flatten()
obs_mask = kps_mask.flatten()
if not self.agent_keypoints:
# passing agent position when keypoints are not available
agent_pos = np.array(self.agent.position)
obs = np.concatenate([obs, agent_pos])
obs_mask = np.concatenate([obs_mask, np.ones((2,), dtype=bool)])
# obs, obs_mask
obs = np.concatenate([obs, obs_mask.astype(obs.dtype)], axis=0)
return obs
def _render_frame(self, mode):
img = super()._render_frame(mode)
if self.draw_keypoints:
self.kp_manager.draw_keypoints(
img, self.draw_kp_map, radius=int(img.shape[0] / 96)
)
return img
import zarr
from pathlib import Path
class Normalizer:
def __init__(self, data_directory, device="cuda", onehot_goals=False):
data_directory = Path(data_directory)
src_root = zarr.group(data_directory / "pusht_cchi_v7_replay.zarr")
# numpy backend
meta = dict()
for key, value in src_root["meta"].items():
if len(value.shape) == 0:
meta[key] = np.array(value)
else:
meta[key] = value[:]
keys = src_root["data"].keys()
data = dict()
for key in keys:
arr = src_root["data"][key]
data[key] = arr[:]
# meta['episode_ends'] = meta['episode_ends'][:int(meta['episode_ends'].shape[0]/4)]
# data['obs'] = data['obs'][:meta['episode_ends'][-1]]
# data['action'] = data['action'][:meta['episode_ends'][-1]]
observations = []
actions = []
masks = []
start = 0
agent_pos = data["state"][:, :2]
keypoint_obs = np.concatenate(
[data["keypoint"].reshape(data["keypoint"].shape[0], -1), agent_pos],
axis=-1,
)
for end in meta["episode_ends"]:
if (300 - (end - start)) <= 0:
print("too small capacity")
observations.append(
np.concatenate(
(keypoint_obs[start:end], np.zeros((300 - (end - start), 20)))
)
)
actions.append(
np.concatenate(
(data["action"][start:end], np.zeros((300 - (end - start), 2)))
)
)
masks.append(
np.concatenate(
(np.ones((end - start)), np.zeros((300 - (end - start))))
)
)
start = end
observations = np.array(observations)
actions = np.array(actions)
masks = np.array(masks)
self.observations_stats = self.get_data_stats(observations)
def get_data_stats(self, data):
data = data.reshape(-1, data.shape[-1])
stats = {"min": np.min(data, axis=0), "max": np.max(data, axis=0)}
return stats
def normalize_data(self, data, stats):
# nomalize to [0,1]
ndata = (data - stats["min"]) / (stats["max"] - stats["min"])
# normalize to [-1, 1]
ndata = ndata * 2 - 1
return ndata
def unnormalize_data(self, ndata, stats):
ndata = (ndata + 1) / 2
data = ndata * (stats["max"] - stats["min"]) + stats["min"]
return data
class PushWrapper(gym.Wrapper):
def __init__(self, env, id):
super(PushWrapper, self).__init__(env)
self.env = env
self.id = id
def reset(self, goal_idx=None):
print("reset env!!!!!")
obs = self.env.reset()
self.step_idx = 0
return_obs = self.env.render(mode="rgb_array")
return_obs = einops.rearrange(return_obs, "H W C -> 1 C H W") / 255.0 # 1 view
return return_obs
def step(self, action):
obs, reward, done, info = self.env.step(action)
info["image"] = self.env.render(mode="rgb_array")
info["all_completions_ids"] = []
if self.step_idx > 300:
done = True
else:
done = False
self.step_idx += 1
info["max_coverage"] = max(self.coverage_arr)
info["final_coverage"] = self.coverage_arr[-1]
return_obs = info["image"]
return_obs = einops.rearrange(return_obs, "H W C -> 1 C H W") / 255.0 # 1 view
return return_obs, reward, done, info
|