File size: 36,890 Bytes
393d3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
# env import
import gym
import einops
from gym import spaces
from pymunk.space_debug_draw_options import SpaceDebugColor
from pymunk.vec2d import Vec2d
from typing import Tuple, Sequence, Dict, Union, Optional
import pygame
import pymunk
import numpy as np
import shapely.geometry as sg
import cv2
import skimage.transform as st
import pymunk.pygame_util
import collections
from matplotlib import cm
import torch
# @markdown ### **Environment**
# @markdown Defines a PyMunk-based Push-T environment `PushTEnv`.
# @markdown
# @markdown **Goal**: push the gray T-block into the green area.
# @markdown
# @markdown Adapted from [Implicit Behavior Cloning](https://implicitbc.github.io/)


positive_y_is_up: bool = False
"""Make increasing values of y point upwards.

When True::

    y
    ^
    |      . (3, 3)
    |
    |   . (2, 2)
    |
    +------ > x

When False::

    +------ > x
    |
    |   . (2, 2)
    |
    |      . (3, 3)
    v
    y

"""


def farthest_point_sampling(points: np.ndarray, n_points: int, init_idx: int):
    """
    Naive O(N^2)
    """
    assert n_points >= 1
    chosen_points = [points[init_idx]]
    for _ in range(n_points - 1):
        cpoints = np.array(chosen_points)
        all_dists = np.linalg.norm(points[:, None, :] - cpoints[None, :, :], axis=-1)
        min_dists = all_dists.min(axis=1)
        next_idx = np.argmax(min_dists)
        next_pt = points[next_idx]
        chosen_points.append(next_pt)
    result = np.array(chosen_points)
    return result


class PymunkKeypointManager:
    def __init__(
        self,
        local_keypoint_map: Dict[str, np.ndarray],
        color_map: Optional[Dict[str, np.ndarray]] = None,
    ):
        """
        local_keypoint_map:
            "<attribute_name>": (N,2) floats in object local coordinate
        """
        if color_map is None:
            cmap = cm.get_cmap("tab10")
            color_map = dict()
            for i, key in enumerate(local_keypoint_map.keys()):
                color_map[key] = (np.array(cmap.colors[i]) * 255).astype(np.uint8)

        self.local_keypoint_map = local_keypoint_map
        self.color_map = color_map

    @property
    def kwargs(self):
        return {
            "local_keypoint_map": self.local_keypoint_map,
            "color_map": self.color_map,
        }

    @classmethod
    def create_from_pusht_env(cls, env, n_block_kps=9, n_agent_kps=3, seed=0, **kwargs):
        rng = np.random.default_rng(seed=seed)
        local_keypoint_map = dict()
        for name in ["block", "agent"]:
            self = env
            self.space = pymunk.Space()
            if name == "agent":
                self.agent = obj = self.add_circle((256, 400), 15)
                n_kps = n_agent_kps
            else:
                self.block = obj = self.add_tee((256, 300), 0)
                n_kps = n_block_kps

            self.screen = pygame.Surface((512, 512))
            self.screen.fill(pygame.Color("white"))
            draw_options = DrawOptions(self.screen)
            self.space.debug_draw(draw_options)
            # pygame.display.flip()
            img = np.uint8(pygame.surfarray.array3d(self.screen).transpose(1, 0, 2))
            obj_mask = (img != np.array([255, 255, 255], dtype=np.uint8)).any(axis=-1)

            tf_img_obj = cls.get_tf_img_obj(obj)
            xy_img = np.moveaxis(np.array(np.indices((512, 512))), 0, -1)[:, :, ::-1]
            local_coord_img = tf_img_obj.inverse(xy_img.reshape(-1, 2)).reshape(
                xy_img.shape
            )
            obj_local_coords = local_coord_img[obj_mask]

            # furthest point sampling
            init_idx = rng.choice(len(obj_local_coords))
            obj_local_kps = farthest_point_sampling(obj_local_coords, n_kps, init_idx)
            small_shift = rng.uniform(0, 1, size=obj_local_kps.shape)
            obj_local_kps += small_shift

            local_keypoint_map[name] = obj_local_kps

        return cls(local_keypoint_map=local_keypoint_map, **kwargs)

    @staticmethod
    def get_tf_img(pose: Sequence):
        pos = pose[:2]
        rot = pose[2]
        tf_img_obj = st.AffineTransform(translation=pos, rotation=rot)
        return tf_img_obj

    @classmethod
    def get_tf_img_obj(cls, obj: pymunk.Body):
        pose = tuple(obj.position) + (obj.angle,)
        return cls.get_tf_img(pose)

    def get_keypoints_global(
        self, pose_map: Dict[set, Union[Sequence, pymunk.Body]], is_obj=False
    ):
        kp_map = dict()
        for key, value in pose_map.items():
            if is_obj:
                tf_img_obj = self.get_tf_img_obj(value)
            else:
                tf_img_obj = self.get_tf_img(value)
            kp_local = self.local_keypoint_map[key]
            kp_global = tf_img_obj(kp_local)
            kp_map[key] = kp_global
        return kp_map

    def draw_keypoints(self, img, kps_map, radius=1):
        scale = np.array(img.shape[:2]) / np.array([512, 512])
        for key, value in kps_map.items():
            color = self.color_map[key].tolist()
            coords = (value * scale).astype(np.int32)
            for coord in coords:
                cv2.circle(img, coord, radius=radius, color=color, thickness=-1)
        return img

    def draw_keypoints_pose(self, img, pose_map, is_obj=False, **kwargs):
        kp_map = self.get_keypoints_global(pose_map, is_obj=is_obj)
        return self.draw_keypoints(img, kps_map=kp_map, **kwargs)


class DrawOptions(pymunk.SpaceDebugDrawOptions):
    def __init__(self, surface: pygame.Surface) -> None:
        """Draw a pymunk.Space on a pygame.Surface object.

        Typical usage::

        >>> import pymunk
        >>> surface = pygame.Surface((10,10))
        >>> space = pymunk.Space()
        >>> options = pymunk.pygame_util.DrawOptions(surface)
        >>> space.debug_draw(options)

        You can control the color of a shape by setting shape.color to the color
        you want it drawn in::

        >>> c = pymunk.Circle(None, 10)
        >>> c.color = pygame.Color("pink")

        See pygame_util.demo.py for a full example

        Since pygame uses a coordinate system where y points down (in contrast
        to many other cases), you either have to make the physics simulation
        with Pymunk also behave in that way, or flip everything when you draw.

        The easiest is probably to just make the simulation behave the same
        way as Pygame does. In that way all coordinates used are in the same
        orientation and easy to reason about::

        >>> space = pymunk.Space()
        >>> space.gravity = (0, -1000)
        >>> body = pymunk.Body()
        >>> body.position = (0, 0) # will be positioned in the top left corner
        >>> space.debug_draw(options)

        To flip the drawing its possible to set the module property
        :py:data:`positive_y_is_up` to True. Then the pygame drawing will flip
        the simulation upside down before drawing::

        >>> positive_y_is_up = True
        >>> body = pymunk.Body()
        >>> body.position = (0, 0)
        >>> # Body will be position in bottom left corner

        :Parameters:
                surface : pygame.Surface
                    Surface that the objects will be drawn on
        """
        self.surface = surface
        super(DrawOptions, self).__init__()

    def draw_circle(
        self,
        pos: Vec2d,
        angle: float,
        radius: float,
        outline_color: SpaceDebugColor,
        fill_color: SpaceDebugColor,
    ) -> None:
        p = to_pygame(pos, self.surface)

        pygame.draw.circle(self.surface, fill_color.as_int(), p, round(radius), 0)
        pygame.draw.circle(
            self.surface, light_color(fill_color).as_int(), p, round(radius - 4), 0
        )

        circle_edge = pos + Vec2d(radius, 0).rotated(angle)
        p2 = to_pygame(circle_edge, self.surface)
        line_r = 2 if radius > 20 else 1
        # pygame.draw.lines(self.surface, outline_color.as_int(), False, [p, p2], line_r)

    def draw_segment(self, a: Vec2d, b: Vec2d, color: SpaceDebugColor) -> None:
        p1 = to_pygame(a, self.surface)
        p2 = to_pygame(b, self.surface)

        pygame.draw.aalines(self.surface, color.as_int(), False, [p1, p2])

    def draw_fat_segment(
        self,
        a: Tuple[float, float],
        b: Tuple[float, float],
        radius: float,
        outline_color: SpaceDebugColor,
        fill_color: SpaceDebugColor,
    ) -> None:
        p1 = to_pygame(a, self.surface)
        p2 = to_pygame(b, self.surface)

        r = round(max(1, radius * 2))
        pygame.draw.lines(self.surface, fill_color.as_int(), False, [p1, p2], r)
        if r > 2:
            orthog = [abs(p2[1] - p1[1]), abs(p2[0] - p1[0])]
            if orthog[0] == 0 and orthog[1] == 0:
                return
            scale = radius / (orthog[0] * orthog[0] + orthog[1] * orthog[1]) ** 0.5
            orthog[0] = round(orthog[0] * scale)
            orthog[1] = round(orthog[1] * scale)
            points = [
                (p1[0] - orthog[0], p1[1] - orthog[1]),
                (p1[0] + orthog[0], p1[1] + orthog[1]),
                (p2[0] + orthog[0], p2[1] + orthog[1]),
                (p2[0] - orthog[0], p2[1] - orthog[1]),
            ]
            pygame.draw.polygon(self.surface, fill_color.as_int(), points)
            pygame.draw.circle(
                self.surface,
                fill_color.as_int(),
                (round(p1[0]), round(p1[1])),
                round(radius),
            )
            pygame.draw.circle(
                self.surface,
                fill_color.as_int(),
                (round(p2[0]), round(p2[1])),
                round(radius),
            )

    def draw_polygon(
        self,
        verts: Sequence[Tuple[float, float]],
        radius: float,
        outline_color: SpaceDebugColor,
        fill_color: SpaceDebugColor,
    ) -> None:
        ps = [to_pygame(v, self.surface) for v in verts]
        ps += [ps[0]]

        radius = 2
        pygame.draw.polygon(self.surface, light_color(fill_color).as_int(), ps)

        if radius > 0:
            for i in range(len(verts)):
                a = verts[i]
                b = verts[(i + 1) % len(verts)]
                self.draw_fat_segment(a, b, radius, fill_color, fill_color)

    def draw_dot(
        self, size: float, pos: Tuple[float, float], color: SpaceDebugColor
    ) -> None:
        p = to_pygame(pos, self.surface)
        pygame.draw.circle(self.surface, color.as_int(), p, round(size), 0)


def get_mouse_pos(surface: pygame.Surface) -> Tuple[int, int]:
    """Get position of the mouse pointer in pymunk coordinates."""
    p = pygame.mouse.get_pos()
    return from_pygame(p, surface)


def to_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
    """Convenience method to convert pymunk coordinates to pygame surface
    local coordinates.

    Note that in case positive_y_is_up is False, this function won't actually do
    anything except converting the point to integers.
    """
    if positive_y_is_up:
        return round(p[0]), surface.get_height() - round(p[1])
    else:
        return round(p[0]), round(p[1])


def from_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
    """Convenience method to convert pygame surface local coordinates to
    pymunk coordinates
    """
    return to_pygame(p, surface)


def light_color(color: SpaceDebugColor):
    color = np.minimum(
        1.2 * np.float32([color.r, color.g, color.b, color.a]), np.float32([255])
    )
    color = SpaceDebugColor(r=color[0], g=color[1], b=color[2], a=color[3])
    return color


def pymunk_to_shapely(body, shapes):
    geoms = list()
    for shape in shapes:
        if isinstance(shape, pymunk.shapes.Poly):
            verts = [body.local_to_world(v) for v in shape.get_vertices()]
            verts += [verts[0]]
            geoms.append(sg.Polygon(verts))
        else:
            raise RuntimeError(f"Unsupported shape type {type(shape)}")
    geom = sg.MultiPolygon(geoms)
    return geom


class PushTEnv(gym.Env):
    metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 10}
    reward_range = (0.0, 1.0)

    def __init__(
        self,
        legacy=False,
        block_cog=None,
        damping=None,
        render_action=True,
        render_size=224,
        reset_to_state=None,
    ):
        self._seed = None
        self.seed()
        self.window_size = ws = 512  # The size of the PyGame window
        self.render_size = render_size
        self.sim_hz = 100
        # Local controller params.
        self.k_p, self.k_v = 100, 20  # PD control.z
        self.control_hz = self.metadata["video.frames_per_second"]
        # legcay set_state for data compatibility
        self.legacy = legacy

        # agent_pos, block_pos, block_angle
        self.observation_space = spaces.Box(
            low=np.array([0, 0, 0, 0, 0], dtype=np.float64),
            high=np.array([ws, ws, ws, ws, np.pi * 2], dtype=np.float64),
            shape=(5,),
            dtype=np.float64,
        )

        # positional goal for agent
        self.action_space = spaces.Box(
            low=np.array([0, 0], dtype=np.float64),
            high=np.array([ws, ws], dtype=np.float64),
            shape=(2,),
            dtype=np.float64,
        )

        self.block_cog = block_cog
        self.damping = damping
        self.render_action = render_action

        """
        If human-rendering is used, `self.window` will be a reference
        to the window that we draw to. `self.clock` will be a clock that is used
        to ensure that the environment is rendered at the correct framerate in
        human-mode. They will remain `None` until human-mode is used for the
        first time.
        """
        self.window = None
        self.clock = None
        self.screen = None

        self.space = None
        self.teleop = None
        self.render_buffer = None
        self.latest_action = None
        self.reset_to_state = reset_to_state
        self.coverage_arr = []

    def reset(self):
        seed = self._seed
        self._setup()
        if self.block_cog is not None:
            self.block.center_of_gravity = self.block_cog
        if self.damping is not None:
            self.space.damping = self.damping

        # use legacy RandomState for compatibility
        state = self.reset_to_state
        if state is None:
            rs = np.random.RandomState(seed=seed)
            state = np.array(
                [
                    rs.randint(50, 450),
                    rs.randint(50, 450),
                    rs.randint(100, 400),
                    rs.randint(100, 400),
                    rs.randn() * 2 * np.pi - np.pi,
                ]
            )
        self._set_state(state)

        self.coverage_arr = []
        observation = self._get_obs()
        return observation

    def step(self, action):
        dt = 1.0 / self.sim_hz
        self.n_contact_points = 0
        n_steps = self.sim_hz // self.control_hz
        if action is not None:
            self.latest_action = action
            for i in range(n_steps):
                # Step PD control.
                # self.agent.velocity = self.k_p * (act - self.agent.position)    # P control works too.
                acceleration = self.k_p * (action - self.agent.position) + self.k_v * (
                    Vec2d(0, 0) - self.agent.velocity
                )
                self.agent.velocity += acceleration * dt

                # Step physics.
                self.space.step(dt)

        # compute reward
        goal_body = self._get_goal_pose_body(self.goal_pose)
        goal_geom = pymunk_to_shapely(goal_body, self.block.shapes)
        block_geom = pymunk_to_shapely(self.block, self.block.shapes)

        intersection_area = goal_geom.intersection(block_geom).area
        goal_area = goal_geom.area
        coverage = intersection_area / goal_area
        reward = np.clip(coverage / self.success_threshold, 0, 1)
        done = False  # coverage > self.success_threshold

        self.coverage_arr.append(coverage)
        observation = self._get_obs()
        info = self._get_info()

        return observation, reward, done, info

    def render(self, mode):
        return self._render_frame(mode)

    def teleop_agent(self):
        TeleopAgent = collections.namedtuple("TeleopAgent", ["act"])

        def act(obs):
            act = None
            mouse_position = pymunk.pygame_util.from_pygame(
                Vec2d(*pygame.mouse.get_pos()), self.screen
            )
            if self.teleop or (mouse_position - self.agent.position).length < 30:
                self.teleop = True
                act = mouse_position
            return act

        return TeleopAgent(act)

    def _get_obs(self):
        obs = np.array(
            tuple(self.agent.position)
            + tuple(self.block.position)
            + (self.block.angle % (2 * np.pi),)
        )
        return obs

    def _get_goal_pose_body(self, pose):
        mass = 1
        inertia = pymunk.moment_for_box(mass, (50, 100))
        body = pymunk.Body(mass, inertia)
        # preserving the legacy assignment order for compatibility
        # the order here doesn't matter somehow, maybe because CoM is aligned with body origin
        body.position = pose[:2].tolist()
        body.angle = pose[2]
        return body

    def _get_info(self):
        n_steps = self.sim_hz // self.control_hz
        n_contact_points_per_step = int(np.ceil(self.n_contact_points / n_steps))
        info = {
            "pos_agent": np.array(self.agent.position),
            "vel_agent": np.array(self.agent.velocity),
            "block_pose": np.array(list(self.block.position) + [self.block.angle]),
            "goal_pose": self.goal_pose,
            "n_contacts": n_contact_points_per_step,
        }
        return info

    def _render_frame(self, mode):
        if self.window is None and mode == "human":
            pygame.init()
            pygame.display.init()
            self.window = pygame.display.set_mode((self.window_size, self.window_size))
        if self.clock is None and mode == "human":
            self.clock = pygame.time.Clock()

        canvas = pygame.Surface((self.window_size, self.window_size))
        canvas.fill((255, 255, 255))
        self.screen = canvas

        draw_options = DrawOptions(canvas)

        # Draw goal pose.
        goal_body = self._get_goal_pose_body(self.goal_pose)
        for shape in self.block.shapes:
            goal_points = [
                pymunk.pygame_util.to_pygame(
                    goal_body.local_to_world(v), draw_options.surface
                )
                for v in shape.get_vertices()
            ]
            goal_points += [goal_points[0]]
            pygame.draw.polygon(canvas, self.goal_color, goal_points)

        # Draw agent and block.
        self.space.debug_draw(draw_options)

        if mode == "human":
            # The following line copies our drawings from `canvas` to the visible window
            self.window.blit(canvas, canvas.get_rect())
            pygame.event.pump()
            pygame.display.update()

            # the clock is already ticked during in step for "human"

        img = np.transpose(np.array(pygame.surfarray.pixels3d(canvas)), axes=(1, 0, 2))
        img = cv2.resize(img, (self.render_size, self.render_size))
        if self.render_action:
            if self.render_action and (self.latest_action is not None):
                action = np.array(self.latest_action)
                coord = (action / 512 * 96).astype(np.int32)
                marker_size = int(8 / 96 * self.render_size)
                thickness = int(1 / 96 * self.render_size)
                cv2.drawMarker(
                    img,
                    coord,
                    color=(255, 0, 0),
                    markerType=cv2.MARKER_CROSS,
                    markerSize=marker_size,
                    thickness=thickness,
                )
        return img

    def close(self):
        if self.window is not None:
            pygame.display.quit()
            pygame.quit()

    def seed(self, seed=None):
        if seed is None:
            seed = np.random.randint(0, 25536)
        self._seed = seed
        self.np_random = np.random.default_rng(seed)

    def _handle_collision(self, arbiter, space, data):
        self.n_contact_points += len(arbiter.contact_point_set.points)

    def _set_state(self, state):
        if isinstance(state, np.ndarray):
            state = state.tolist()
        pos_agent = state[:2]
        pos_block = state[2:4]
        rot_block = state[4]
        self.agent.position = pos_agent
        # setting angle rotates with respect to center of mass
        # therefore will modify the geometric position
        # if not the same as CoM
        # therefore should be modified first.
        if self.legacy:
            # for compatibility with legacy data
            self.block.position = pos_block
            self.block.angle = rot_block
        else:
            self.block.angle = rot_block
            self.block.position = pos_block

        # Run physics to take effect
        self.space.step(1.0 / self.sim_hz)

    def _set_state_local(self, state_local):
        agent_pos_local = state_local[:2]
        block_pose_local = state_local[2:]
        tf_img_obj = st.AffineTransform(
            translation=self.goal_pose[:2], rotation=self.goal_pose[2]
        )
        tf_obj_new = st.AffineTransform(
            translation=block_pose_local[:2], rotation=block_pose_local[2]
        )
        tf_img_new = st.AffineTransform(matrix=tf_img_obj.params @ tf_obj_new.params)
        agent_pos_new = tf_img_new(agent_pos_local)
        new_state = np.array(
            list(agent_pos_new[0])
            + list(tf_img_new.translation)
            + [tf_img_new.rotation]
        )
        self._set_state(new_state)
        return new_state

    def set_task_goal(self, goal):
        self.goal_pose = goal

    def _setup(self):
        self.space = pymunk.Space()
        self.space.gravity = 0, 0
        self.space.damping = 0
        self.teleop = False
        self.render_buffer = list()

        # Add walls.
        walls = [
            self._add_segment((5, 506), (5, 5), 2),
            self._add_segment((5, 5), (506, 5), 2),
            self._add_segment((506, 5), (506, 506), 2),
            self._add_segment((5, 506), (506, 506), 2),
        ]
        self.space.add(*walls)

        # Add agent, block, and goal zone.
        self.agent = self.add_circle((256, 400), 15)
        self.block = self.add_tee((256, 300), 0)
        self.goal_color = pygame.Color("LightGreen")
        self.goal_pose = np.array([256, 256, np.pi / 4])  # x, y, theta (in radians)

        # Add collision handling
        self.collision_handeler = self.space.add_collision_handler(0, 0)
        self.collision_handeler.post_solve = self._handle_collision
        self.n_contact_points = 0

        self.max_score = 50 * 100
        self.success_threshold = 0.95  # 95% coverage.

    def _add_segment(self, a, b, radius):
        shape = pymunk.Segment(self.space.static_body, a, b, radius)
        shape.color = pygame.Color(
            "LightGray"
        )  # https://htmlcolorcodes.com/color-names
        return shape

    def add_circle(self, position, radius):
        body = pymunk.Body(body_type=pymunk.Body.KINEMATIC)
        body.position = position
        body.friction = 1
        shape = pymunk.Circle(body, radius)
        shape.color = pygame.Color("RoyalBlue")
        self.space.add(body, shape)
        return body

    def add_box(self, position, height, width):
        mass = 1
        inertia = pymunk.moment_for_box(mass, (height, width))
        body = pymunk.Body(mass, inertia)
        body.position = position
        shape = pymunk.Poly.create_box(body, (height, width))
        shape.color = pygame.Color("LightSlateGray")
        self.space.add(body, shape)
        return body

    def add_tee(
        self,
        position,
        angle,
        scale=30,
        color="LightSlateGray",
        mask=pymunk.ShapeFilter.ALL_MASKS(),
    ):
        mass = 1
        length = 4
        vertices1 = [
            (-length * scale / 2, scale),
            (length * scale / 2, scale),
            (length * scale / 2, 0),
            (-length * scale / 2, 0),
        ]
        inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
        vertices2 = [
            (-scale / 2, scale),
            (-scale / 2, length * scale),
            (scale / 2, length * scale),
            (scale / 2, scale),
        ]
        inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
        body = pymunk.Body(mass, inertia1 + inertia2)
        shape1 = pymunk.Poly(body, vertices1)
        shape2 = pymunk.Poly(body, vertices2)
        shape1.color = pygame.Color(color)
        shape2.color = pygame.Color(color)
        shape1.filter = pymunk.ShapeFilter(mask=mask)
        shape2.filter = pymunk.ShapeFilter(mask=mask)
        body.center_of_gravity = (
            shape1.center_of_gravity + shape2.center_of_gravity
        ) / 2
        body.position = position
        body.angle = angle
        body.friction = 1
        self.space.add(body, shape1, shape2)
        return body


class PymunkKeypointManager:
    def __init__(
        self,
        local_keypoint_map: Dict[str, np.ndarray],
        color_map: Optional[Dict[str, np.ndarray]] = None,
    ):
        """
        local_keypoint_map:
            "<attribute_name>": (N,2) floats in object local coordinate
        """
        if color_map is None:
            cmap = cm.get_cmap("tab10")
            color_map = dict()
            for i, key in enumerate(local_keypoint_map.keys()):
                color_map[key] = (np.array(cmap.colors[i]) * 255).astype(np.uint8)

        self.local_keypoint_map = local_keypoint_map
        self.color_map = color_map

    @property
    def kwargs(self):
        return {
            "local_keypoint_map": self.local_keypoint_map,
            "color_map": self.color_map,
        }

    @classmethod
    def create_from_pusht_env(cls, env, n_block_kps=9, n_agent_kps=3, seed=0, **kwargs):
        rng = np.random.default_rng(seed=seed)
        local_keypoint_map = dict()
        for name in ["block", "agent"]:
            self = env
            self.space = pymunk.Space()
            if name == "agent":
                self.agent = obj = self.add_circle((256, 400), 15)
                n_kps = n_agent_kps
            else:
                self.block = obj = self.add_tee((256, 300), 0)
                n_kps = n_block_kps

            self.screen = pygame.Surface((512, 512))
            self.screen.fill(pygame.Color("white"))
            draw_options = DrawOptions(self.screen)
            self.space.debug_draw(draw_options)
            # pygame.display.flip()
            img = np.uint8(pygame.surfarray.array3d(self.screen).transpose(1, 0, 2))
            obj_mask = (img != np.array([255, 255, 255], dtype=np.uint8)).any(axis=-1)

            tf_img_obj = cls.get_tf_img_obj(obj)
            xy_img = np.moveaxis(np.array(np.indices((512, 512))), 0, -1)[:, :, ::-1]
            local_coord_img = tf_img_obj.inverse(xy_img.reshape(-1, 2)).reshape(
                xy_img.shape
            )
            obj_local_coords = local_coord_img[obj_mask]

            # furthest point sampling
            init_idx = rng.choice(len(obj_local_coords))
            obj_local_kps = farthest_point_sampling(obj_local_coords, n_kps, init_idx)
            small_shift = rng.uniform(0, 1, size=obj_local_kps.shape)
            obj_local_kps += small_shift

            local_keypoint_map[name] = obj_local_kps

        return cls(local_keypoint_map=local_keypoint_map, **kwargs)

    @staticmethod
    def get_tf_img(pose: Sequence):
        pos = pose[:2]
        rot = pose[2]
        tf_img_obj = st.AffineTransform(translation=pos, rotation=rot)
        return tf_img_obj

    @classmethod
    def get_tf_img_obj(cls, obj: pymunk.Body):
        pose = tuple(obj.position) + (obj.angle,)
        return cls.get_tf_img(pose)

    def get_keypoints_global(
        self, pose_map: Dict[set, Union[Sequence, pymunk.Body]], is_obj=False
    ):
        kp_map = dict()
        for key, value in pose_map.items():
            if is_obj:
                tf_img_obj = self.get_tf_img_obj(value)
            else:
                tf_img_obj = self.get_tf_img(value)
            kp_local = self.local_keypoint_map[key]
            kp_global = tf_img_obj(kp_local)
            kp_map[key] = kp_global
        return kp_map

    def draw_keypoints(self, img, kps_map, radius=1):
        scale = np.array(img.shape[:2]) / np.array([512, 512])
        for key, value in kps_map.items():
            color = self.color_map[key].tolist()
            coords = (value * scale).astype(np.int32)
            for coord in coords:
                cv2.circle(img, coord, radius=radius, color=color, thickness=-1)
        return img

    def draw_keypoints_pose(self, img, pose_map, is_obj=False, **kwargs):
        kp_map = self.get_keypoints_global(pose_map, is_obj=is_obj)
        return self.draw_keypoints(img, kps_map=kp_map, **kwargs)


class PushTKeypointsEnv(PushTEnv):
    def __init__(
        self,
        legacy=False,
        block_cog=None,
        damping=None,
        render_size=224,
        keypoint_visible_rate=1.0,
        agent_keypoints=False,
        draw_keypoints=False,
        reset_to_state=None,
        render_action=False,
        local_keypoint_map: Dict[str, np.ndarray] = None,
        color_map: Optional[Dict[str, np.ndarray]] = None,
    ):
        super().__init__(
            legacy=legacy,
            block_cog=block_cog,
            damping=damping,
            render_size=render_size,
            reset_to_state=reset_to_state,
            render_action=render_action,
        )
        ws = self.window_size

        if local_keypoint_map is None:
            # create default keypoint definition
            kp_kwargs = self.genenerate_keypoint_manager_params()
            local_keypoint_map = kp_kwargs["local_keypoint_map"]
            color_map = kp_kwargs["color_map"]

        # create observation spaces
        Dblockkps = np.prod(local_keypoint_map["block"].shape)
        Dagentkps = np.prod(local_keypoint_map["agent"].shape)
        Dagentpos = 2

        Do = Dblockkps
        if agent_keypoints:
            # blockkp + agnet_pos
            Do += Dagentkps
        else:
            # blockkp + agnet_kp
            Do += Dagentpos
        # obs + obs_mask
        Dobs = Do * 2

        low = np.zeros((Dobs,), dtype=np.float64)
        high = np.full_like(low, ws)
        # mask range 0-1
        high[Do:] = 1.0

        # (block_kps+agent_kps, xy+confidence)
        self.observation_space = spaces.Box(
            low=low, high=high, shape=low.shape, dtype=np.float64
        )

        self.keypoint_visible_rate = keypoint_visible_rate
        self.agent_keypoints = agent_keypoints
        self.draw_keypoints = draw_keypoints
        self.kp_manager = PymunkKeypointManager(
            local_keypoint_map=local_keypoint_map, color_map=color_map
        )
        self.draw_kp_map = None

    @classmethod
    def genenerate_keypoint_manager_params(cls):
        env = PushTEnv()
        kp_manager = PymunkKeypointManager.create_from_pusht_env(env)
        kp_kwargs = kp_manager.kwargs
        return kp_kwargs

    def _get_obs(self):
        # get keypoints
        obj_map = {"block": self.block}
        if self.agent_keypoints:
            obj_map["agent"] = self.agent

        kp_map = self.kp_manager.get_keypoints_global(pose_map=obj_map, is_obj=True)
        # python dict guerentee order of keys and values
        kps = np.concatenate(list(kp_map.values()), axis=0)

        # select keypoints to drop
        n_kps = kps.shape[0]
        visible_kps = self.np_random.random(size=(n_kps,)) < self.keypoint_visible_rate
        kps_mask = np.repeat(visible_kps[:, None], 2, axis=1)

        # save keypoints for rendering
        vis_kps = kps.copy()
        vis_kps[~visible_kps] = 0
        draw_kp_map = {"block": vis_kps[: len(kp_map["block"])]}
        if self.agent_keypoints:
            draw_kp_map["agent"] = vis_kps[len(kp_map["block"]) :]
        self.draw_kp_map = draw_kp_map

        # construct obs
        obs = kps.flatten()
        obs_mask = kps_mask.flatten()
        if not self.agent_keypoints:
            # passing agent position when keypoints are not available
            agent_pos = np.array(self.agent.position)
            obs = np.concatenate([obs, agent_pos])
            obs_mask = np.concatenate([obs_mask, np.ones((2,), dtype=bool)])

        # obs, obs_mask
        obs = np.concatenate([obs, obs_mask.astype(obs.dtype)], axis=0)
        return obs

    def _render_frame(self, mode):
        img = super()._render_frame(mode)
        if self.draw_keypoints:
            self.kp_manager.draw_keypoints(
                img, self.draw_kp_map, radius=int(img.shape[0] / 96)
            )
        return img


import zarr
from pathlib import Path


class Normalizer:
    def __init__(self, data_directory, device="cuda", onehot_goals=False):
        data_directory = Path(data_directory)
        src_root = zarr.group(data_directory / "pusht_cchi_v7_replay.zarr")

        # numpy backend
        meta = dict()
        for key, value in src_root["meta"].items():
            if len(value.shape) == 0:
                meta[key] = np.array(value)
            else:
                meta[key] = value[:]

        keys = src_root["data"].keys()
        data = dict()
        for key in keys:
            arr = src_root["data"][key]
            data[key] = arr[:]
        # meta['episode_ends'] = meta['episode_ends'][:int(meta['episode_ends'].shape[0]/4)]
        # data['obs'] = data['obs'][:meta['episode_ends'][-1]]
        # data['action'] = data['action'][:meta['episode_ends'][-1]]

        observations = []
        actions = []
        masks = []
        start = 0
        agent_pos = data["state"][:, :2]
        keypoint_obs = np.concatenate(
            [data["keypoint"].reshape(data["keypoint"].shape[0], -1), agent_pos],
            axis=-1,
        )

        for end in meta["episode_ends"]:
            if (300 - (end - start)) <= 0:
                print("too small capacity")
            observations.append(
                np.concatenate(
                    (keypoint_obs[start:end], np.zeros((300 - (end - start), 20)))
                )
            )
            actions.append(
                np.concatenate(
                    (data["action"][start:end], np.zeros((300 - (end - start), 2)))
                )
            )
            masks.append(
                np.concatenate(
                    (np.ones((end - start)), np.zeros((300 - (end - start))))
                )
            )

            start = end
        observations = np.array(observations)
        actions = np.array(actions)
        masks = np.array(masks)

        self.observations_stats = self.get_data_stats(observations)

    def get_data_stats(self, data):
        data = data.reshape(-1, data.shape[-1])
        stats = {"min": np.min(data, axis=0), "max": np.max(data, axis=0)}
        return stats

    def normalize_data(self, data, stats):
        # nomalize to [0,1]
        ndata = (data - stats["min"]) / (stats["max"] - stats["min"])
        # normalize to [-1, 1]
        ndata = ndata * 2 - 1
        return ndata

    def unnormalize_data(self, ndata, stats):
        ndata = (ndata + 1) / 2
        data = ndata * (stats["max"] - stats["min"]) + stats["min"]
        return data


class PushWrapper(gym.Wrapper):
    def __init__(self, env, id):
        super(PushWrapper, self).__init__(env)
        self.env = env
        self.id = id

    def reset(self, goal_idx=None):
        print("reset env!!!!!")
        obs = self.env.reset()
        self.step_idx = 0
        return_obs = self.env.render(mode="rgb_array")
        return_obs = einops.rearrange(return_obs, "H W C -> 1 C H W") / 255.0  # 1 view
        return return_obs

    def step(self, action):
        obs, reward, done, info = self.env.step(action)
        info["image"] = self.env.render(mode="rgb_array")
        info["all_completions_ids"] = []
        if self.step_idx > 300:
            done = True
        else:
            done = False
        self.step_idx += 1
        info["max_coverage"] = max(self.coverage_arr)
        info["final_coverage"] = self.coverage_arr[-1]
        return_obs = info["image"]
        return_obs = einops.rearrange(return_obs, "H W C -> 1 C H W") / 255.0  # 1 view

        return return_obs, reward, done, info