File size: 2,386 Bytes
4e7e00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
language:
- es
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Large Es - Javier Alonso
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: es
split: test
args: es
metrics:
- name: Wer
type: wer
value: 5.520113299724547
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large Es - Javier Alonso
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1571
- Wer: 5.5201
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.211 | 0.1 | 1000 | 0.2293 | 8.3896 |
| 0.2227 | 0.2 | 2000 | 0.2215 | 8.2552 |
| 0.1496 | 0.3 | 3000 | 0.2121 | 8.0362 |
| 0.1851 | 0.4 | 4000 | 0.2018 | 7.5197 |
| 0.1917 | 0.5 | 5000 | 0.1916 | 7.1098 |
| 0.1857 | 0.6 | 6000 | 0.1817 | 6.5537 |
| 0.1294 | 0.7 | 7000 | 0.1752 | 6.4062 |
| 0.1358 | 0.8 | 8000 | 0.1670 | 5.9950 |
| 0.1542 | 0.9 | 9000 | 0.1604 | 5.7858 |
| 0.1554 | 1.0 | 10000 | 0.1571 | 5.5201 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|