Whisper Large Es - Javier Alonso

This model is a fine-tuned version of openai/whisper-large on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1571
  • Wer: 5.5201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.211 0.1 1000 0.2293 8.3896
0.2227 0.2 2000 0.2215 8.2552
0.1496 0.3 3000 0.2121 8.0362
0.1851 0.4 4000 0.2018 7.5197
0.1917 0.5 5000 0.1916 7.1098
0.1857 0.6 6000 0.1817 6.5537
0.1294 0.7 7000 0.1752 6.4062
0.1358 0.8 8000 0.1670 5.9950
0.1542 0.9 9000 0.1604 5.7858
0.1554 1.0 10000 0.1571 5.5201

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train javilonso/whisper-large-es

Evaluation results