Qwen2.5-VL-abliterated
Collection
2 items
•
Updated
•
2
This is an uncensored version of Qwen/Qwen2.5-VL-3B-Instruct created with abliteration (see remove-refusals-with-transformers to know more about it).
It was only the text part that was processed, not the image part.
You can use this model in your applications by loading it with Hugging Face's transformers
library:
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"huihui-ai/Qwen2.5-VL-3B-Instruct-abliterated", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("huihui-ai/Qwen2.5-VL-3B-Instruct-abliterated")
image_path = "/tmp/test.png"
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": f"file://{image_path}",
},
{"type": "text", "text": "Describe this image."},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=256)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
output_text = output_text[0]
print(output_text)
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
Unable to build the model tree, the base model loops to the model itself. Learn more.