huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int8

This is a GPTQ-quantized 8-bit version of huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned.

This is just the quantification test for GPTQ, with only one dataset: "gptqmodel is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm.".
If you need your own dataset, please contact us: [email protected]

How to use

This repository contains two versions of Llama-3.3-70B-Instruct, for use with transformers and with the original llama codebase.

Use with transformers

Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.

Make sure to update your transformers installation via pip install --upgrade transformers.

See the snippet below for usage with Transformers:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load the model and tokenizer
model_name = "huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int8"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

# Initialize conversation context
initial_messages = [
    {"role": "system", "content": "You are a helpful assistant."}
]
messages = initial_messages.copy()  # Copy the initial conversation context

# Enter conversation loop
while True:
    # Get user input
    user_input = input("User: ").strip()  # Strip leading and trailing spaces

    # If the user types '/exit', end the conversation
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break

    # If the user types '/clean', reset the conversation context
    if user_input.lower() == "/clean":
        messages = initial_messages.copy()  # Reset conversation context
        print("Chat history cleared. Starting a new conversation.")
        continue

    # If input is empty, prompt the user and continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue

    # Add user input to the conversation
    messages.append({"role": "user", "content": user_input})

    # Build the chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize input and prepare it for the model
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    # Generate a response from the model
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=8192,
        pad_token_id=tokenizer.pad_token_id
    )

    # Extract model output, removing special tokens
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    # Add the model's response to the conversation
    messages.append({"role": "assistant", "content": response})

    # Print the model's response
    print(f"Response: {response}")
Downloads last month
390,773
Safetensors
Model size
19.9B params
Tensor type
FP16
·
I32
·
Inference API
Input a message to start chatting with huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int8.

Model tree for huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int8

Space using huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int8 1