|
--- |
|
language: code |
|
thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png |
|
datasets: |
|
- code_search_net |
|
license: apache-2.0 |
|
base_model: huggingface/CodeBERTa-small-v1 |
|
--- |
|
|
|
# CodeBERTa-language-id: The World’s fanciest programming language identification algo 🤯 |
|
|
|
|
|
To demonstrate the usefulness of our CodeBERTa pretrained model on downstream tasks beyond language modeling, we fine-tune the [`CodeBERTa-small-v1`](https://huggingface.co/huggingface/CodeBERTa-small-v1) checkpoint on the task of classifying a sample of code into the programming language it's written in (*programming language identification*). |
|
|
|
We add a sequence classification head on top of the model. |
|
|
|
On the evaluation dataset, we attain an eval accuracy and F1 > 0.999 which is not surprising given that the task of language identification is relatively easy (see an intuition why, below). |
|
|
|
## Quick start: using the raw model |
|
|
|
```python |
|
CODEBERTA_LANGUAGE_ID = "huggingface/CodeBERTa-language-id" |
|
|
|
tokenizer = RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID) |
|
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID) |
|
|
|
input_ids = tokenizer.encode(CODE_TO_IDENTIFY) |
|
logits = model(input_ids)[0] |
|
|
|
language_idx = logits.argmax() # index for the resulting label |
|
``` |
|
|
|
|
|
## Quick start: using Pipelines 💪 |
|
|
|
```python |
|
from transformers import TextClassificationPipeline |
|
|
|
pipeline = TextClassificationPipeline( |
|
model=RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID), |
|
tokenizer=RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID) |
|
) |
|
|
|
pipeline(CODE_TO_IDENTIFY) |
|
``` |
|
|
|
Let's start with something very easy: |
|
|
|
```python |
|
pipeline(""" |
|
def f(x): |
|
return x**2 |
|
""") |
|
# [{'label': 'python', 'score': 0.9999965}] |
|
``` |
|
|
|
Now let's probe shorter code samples: |
|
|
|
```python |
|
pipeline("const foo = 'bar'") |
|
# [{'label': 'javascript', 'score': 0.9977546}] |
|
``` |
|
|
|
What if I remove the `const` token from the assignment? |
|
```python |
|
pipeline("foo = 'bar'") |
|
# [{'label': 'javascript', 'score': 0.7176245}] |
|
``` |
|
|
|
For some reason, this is still statistically detected as JS code, even though it's also valid Python code. However, if we slightly tweak it: |
|
|
|
```python |
|
pipeline("foo = u'bar'") |
|
# [{'label': 'python', 'score': 0.7638422}] |
|
``` |
|
This is now detected as Python (Notice the `u` string modifier). |
|
|
|
Okay, enough with the JS and Python domination already! Let's try fancier languages: |
|
|
|
```python |
|
pipeline("echo $FOO") |
|
# [{'label': 'php', 'score': 0.9995257}] |
|
``` |
|
|
|
(Yes, I used the word "fancy" to describe PHP 😅) |
|
|
|
```python |
|
pipeline("outcome := rand.Intn(6) + 1") |
|
# [{'label': 'go', 'score': 0.9936151}] |
|
``` |
|
|
|
Why is the problem of language identification so easy (with the correct toolkit)? Because code's syntax is rigid, and simple tokens such as `:=` (the assignment operator in Go) are perfect predictors of the underlying language: |
|
|
|
```python |
|
pipeline(":=") |
|
# [{'label': 'go', 'score': 0.9998052}] |
|
``` |
|
|
|
By the way, because we trained our own custom tokenizer on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset, and it handles streams of bytes in a very generic way, syntactic constructs such `:=` are represented by a single token: |
|
|
|
```python |
|
self.tokenizer.encode(" :=", add_special_tokens=False) |
|
# [521] |
|
``` |
|
|
|
<br> |
|
|
|
## Fine-tuning code |
|
|
|
<details> |
|
|
|
```python |
|
import gzip |
|
import json |
|
import logging |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
from sklearn.metrics import f1_score |
|
from tokenizers.implementations.byte_level_bpe import ByteLevelBPETokenizer |
|
from tokenizers.processors import BertProcessing |
|
from torch.nn.utils.rnn import pad_sequence |
|
from torch.utils.data import DataLoader, Dataset |
|
from torch.utils.data.dataset import Dataset |
|
from torch.utils.tensorboard.writer import SummaryWriter |
|
from tqdm import tqdm, trange |
|
|
|
from transformers import RobertaForSequenceClassification |
|
from transformers.data.metrics import acc_and_f1, simple_accuracy |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
CODEBERTA_PRETRAINED = "huggingface/CodeBERTa-small-v1" |
|
|
|
LANGUAGES = [ |
|
"go", |
|
"java", |
|
"javascript", |
|
"php", |
|
"python", |
|
"ruby", |
|
] |
|
FILES_PER_LANGUAGE = 1 |
|
EVALUATE = True |
|
|
|
# Set up tokenizer |
|
tokenizer = ByteLevelBPETokenizer("./pretrained/vocab.json", "./pretrained/merges.txt",) |
|
tokenizer._tokenizer.post_processor = BertProcessing( |
|
("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")), |
|
) |
|
tokenizer.enable_truncation(max_length=512) |
|
|
|
# Set up Tensorboard |
|
tb_writer = SummaryWriter() |
|
|
|
|
|
class CodeSearchNetDataset(Dataset): |
|
examples: List[Tuple[List[int], int]] |
|
|
|
def __init__(self, split: str = "train"): |
|
""" |
|
train | valid | test |
|
""" |
|
|
|
self.examples = [] |
|
|
|
src_files = [] |
|
for language in LANGUAGES: |
|
src_files += list( |
|
Path("../CodeSearchNet/resources/data/").glob(f"{language}/final/jsonl/{split}/*.jsonl.gz") |
|
)[:FILES_PER_LANGUAGE] |
|
for src_file in src_files: |
|
label = src_file.parents[3].name |
|
label_idx = LANGUAGES.index(label) |
|
print("🔥", src_file, label) |
|
lines = [] |
|
fh = gzip.open(src_file, mode="rt", encoding="utf-8") |
|
for line in fh: |
|
o = json.loads(line) |
|
lines.append(o["code"]) |
|
examples = [(x.ids, label_idx) for x in tokenizer.encode_batch(lines)] |
|
self.examples += examples |
|
print("🔥🔥") |
|
|
|
def __len__(self): |
|
return len(self.examples) |
|
|
|
def __getitem__(self, i): |
|
# We’ll pad at the batch level. |
|
return self.examples[i] |
|
|
|
|
|
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_PRETRAINED, num_labels=len(LANGUAGES)) |
|
|
|
train_dataset = CodeSearchNetDataset(split="train") |
|
eval_dataset = CodeSearchNetDataset(split="test") |
|
|
|
|
|
def collate(examples): |
|
input_ids = pad_sequence([torch.tensor(x[0]) for x in examples], batch_first=True, padding_value=1) |
|
labels = torch.tensor([x[1] for x in examples]) |
|
# ^^ uncessary .unsqueeze(-1) |
|
return input_ids, labels |
|
|
|
|
|
train_dataloader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=collate) |
|
|
|
batch = next(iter(train_dataloader)) |
|
|
|
|
|
model.to("cuda") |
|
model.train() |
|
for param in model.roberta.parameters(): |
|
param.requires_grad = False |
|
## ^^ Only train final layer. |
|
|
|
print(f"num params:", model.num_parameters()) |
|
print(f"num trainable params:", model.num_parameters(only_trainable=True)) |
|
|
|
|
|
def evaluate(): |
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
preds = np.empty((0), dtype=np.int64) |
|
out_label_ids = np.empty((0), dtype=np.int64) |
|
|
|
model.eval() |
|
|
|
eval_dataloader = DataLoader(eval_dataset, batch_size=512, collate_fn=collate) |
|
for step, (input_ids, labels) in enumerate(tqdm(eval_dataloader, desc="Eval")): |
|
with torch.no_grad(): |
|
outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda")) |
|
loss = outputs[0] |
|
logits = outputs[1] |
|
eval_loss += loss.mean().item() |
|
nb_eval_steps += 1 |
|
preds = np.append(preds, logits.argmax(dim=1).detach().cpu().numpy(), axis=0) |
|
out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0) |
|
eval_loss = eval_loss / nb_eval_steps |
|
acc = simple_accuracy(preds, out_label_ids) |
|
f1 = f1_score(y_true=out_label_ids, y_pred=preds, average="macro") |
|
print("=== Eval: loss ===", eval_loss) |
|
print("=== Eval: acc. ===", acc) |
|
print("=== Eval: f1 ===", f1) |
|
# print(acc_and_f1(preds, out_label_ids)) |
|
tb_writer.add_scalars("eval", {"loss": eval_loss, "acc": acc, "f1": f1}, global_step) |
|
|
|
|
|
### Training loop |
|
|
|
global_step = 0 |
|
train_iterator = trange(0, 4, desc="Epoch") |
|
optimizer = torch.optim.AdamW(model.parameters()) |
|
for _ in train_iterator: |
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration") |
|
for step, (input_ids, labels) in enumerate(epoch_iterator): |
|
optimizer.zero_grad() |
|
outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda")) |
|
loss = outputs[0] |
|
loss.backward() |
|
tb_writer.add_scalar("training_loss", loss.item(), global_step) |
|
optimizer.step() |
|
global_step += 1 |
|
if EVALUATE and global_step % 50 == 0: |
|
evaluate() |
|
model.train() |
|
|
|
|
|
evaluate() |
|
|
|
os.makedirs("./models/CodeBERT-language-id", exist_ok=True) |
|
model.save_pretrained("./models/CodeBERT-language-id") |
|
``` |
|
|
|
</details> |
|
|
|
<br> |
|
|
|
## CodeSearchNet citation |
|
|
|
<details> |
|
|
|
```bibtex |
|
@article{husain_codesearchnet_2019, |
|
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}}, |
|
shorttitle = {{CodeSearchNet} {Challenge}}, |
|
url = {http://arxiv.org/abs/1909.09436}, |
|
urldate = {2020-03-12}, |
|
journal = {arXiv:1909.09436 [cs, stat]}, |
|
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc}, |
|
month = sep, |
|
year = {2019}, |
|
note = {arXiv: 1909.09436}, |
|
} |
|
``` |
|
|
|
</details> |