YAML Metadata
Error:
"language[0]" must only contain lowercase characters
YAML Metadata
Error:
"language[0]" with value "sv-SE" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.
XLS-R-300m-SV
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset. It achieves the following results on the evaluation set:
- Loss: 0.3171
- Wer: 0.2468
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.3349 | 1.45 | 500 | 3.2858 | 1.0 |
2.9298 | 2.91 | 1000 | 2.9225 | 1.0000 |
2.0839 | 4.36 | 1500 | 1.1546 | 0.8295 |
1.7093 | 5.81 | 2000 | 0.6827 | 0.5701 |
1.5855 | 7.27 | 2500 | 0.5597 | 0.4947 |
1.4831 | 8.72 | 3000 | 0.4923 | 0.4527 |
1.4416 | 10.17 | 3500 | 0.4670 | 0.4270 |
1.3848 | 11.63 | 4000 | 0.4341 | 0.3980 |
1.3749 | 13.08 | 4500 | 0.4203 | 0.4011 |
1.3311 | 14.53 | 5000 | 0.4310 | 0.3961 |
1.317 | 15.99 | 5500 | 0.3898 | 0.4322 |
1.2799 | 17.44 | 6000 | 0.3806 | 0.3572 |
1.2771 | 18.89 | 6500 | 0.3828 | 0.3427 |
1.2451 | 20.35 | 7000 | 0.3702 | 0.3359 |
1.2182 | 21.8 | 7500 | 0.3685 | 0.3270 |
1.2152 | 23.26 | 8000 | 0.3650 | 0.3308 |
1.1837 | 24.71 | 8500 | 0.3568 | 0.3187 |
1.1721 | 26.16 | 9000 | 0.3659 | 0.3249 |
1.1764 | 27.61 | 9500 | 0.3547 | 0.3145 |
1.1606 | 29.07 | 10000 | 0.3514 | 0.3104 |
1.1431 | 30.52 | 10500 | 0.3469 | 0.3062 |
1.1047 | 31.97 | 11000 | 0.3313 | 0.2979 |
1.1315 | 33.43 | 11500 | 0.3298 | 0.2992 |
1.1022 | 34.88 | 12000 | 0.3296 | 0.2973 |
1.0935 | 36.34 | 12500 | 0.3278 | 0.2926 |
1.0676 | 37.79 | 13000 | 0.3208 | 0.2868 |
1.0571 | 39.24 | 13500 | 0.3322 | 0.2885 |
1.0536 | 40.7 | 14000 | 0.3245 | 0.2831 |
1.0525 | 42.15 | 14500 | 0.3285 | 0.2826 |
1.0464 | 43.6 | 15000 | 0.3223 | 0.2796 |
1.0415 | 45.06 | 15500 | 0.3166 | 0.2774 |
1.0356 | 46.51 | 16000 | 0.3177 | 0.2746 |
1.04 | 47.96 | 16500 | 0.3150 | 0.2735 |
1.0209 | 49.42 | 17000 | 0.3175 | 0.2731 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_7_0
with splittest
python eval.py --model_id hf-test/xls-r-300m-sv --dataset mozilla-foundation/common_voice_7_0 --config sv-SE --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id hf-test/xls-r-300m-sv --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "hf-test/xls-r-300m-sv"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "sv-SE", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "jag lämnade grovjobbet åt honom"
Eval results on Common Voice 7 "test" (WER):
Without LM | With LM (run ./eval.py ) |
---|---|
24.68 | 16.98 |
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train hf-test/xls-r-300m-sv
Evaluation results
- Test WER on Common Voice 7self-reported16.980
- Test CER on Common Voice 7self-reported5.660
- Test WER on Robust Speech Event - Dev Dataself-reported27.010
- Test CER on Robust Speech Event - Dev Dataself-reported13.140