Automatic Speech Recognition
Transformers
PyTorch
speech-encoder-decoder
speech
xls_r
xls_r_translation
Inference Endpoints

Wav2Vec2-XLS-R-300M-21-EN

Facebook's Wav2Vec2 XLS-R fine-tuned for Speech Translation.

model image

This is a SpeechEncoderDecoderModel model. The encoder was warm-started from the facebook/wav2vec2-xls-r-300m checkpoint and the decoder from the facebook/mbart-large-50 checkpoint. Consequently, the encoder-decoder model was fine-tuned on 21 {lang} -> en translation pairs of the Covost2 dataset.

The model can translate from the following spoken languages {lang} -> en (English):

{fr, de, es, ca, it, ru, zh-CN, pt, fa, et, mn, nl, tr, ar, sv-SE, lv, sl, ta, ja, id, cy} -> en

For more information, please refer to Section 5.1.2 of the official XLS-R paper.

Usage

Demo

The model can be tested directly on the speech recognition widget on this model card! Simple record some audio in one of the possible spoken languages or pick an example audio file to see how well the checkpoint can translate the input.

Example

As this a standard sequence to sequence transformer model, you can use the generate method to generate the transcripts by passing the speech features to the model.

You can use the model directly via the ASR pipeline

from datasets import load_dataset
from transformers import pipeline

# replace following lines to load an audio file of your choice
librispeech_en = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
audio_file = librispeech_en[0]["file"]

asr = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-xls-r-300m-21-to-en", feature_extractor="facebook/wav2vec2-xls-r-300m-21-to-en")

translation = asr(audio_file)

or step-by-step as follows:

import torch
from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
from datasets import load_dataset

model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-21-to-en")
processor = Speech2Text2Processor.from_pretrained("facebook/wav2vec2-xls-r-300m-21-to-en")

ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")

inputs = processor(ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["array"]["sampling_rate"], return_tensors="pt")
generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"])
transcription = processor.batch_decode(generated_ids)

Results {lang} -> en

See the row of XLS-R (0.3B) for the performance on Covost2 for this model.

results image

More XLS-R models for {lang} -> en Speech Translation

Downloads last month
393
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train facebook/wav2vec2-xls-r-300m-21-to-en

Space using facebook/wav2vec2-xls-r-300m-21-to-en 1

Collection including facebook/wav2vec2-xls-r-300m-21-to-en