arabic-nano-gpt

This model is a fine-tuned version of openai-community/gpt2 on the arabic wikimedia/wikipedia dataset.

Repository on GitHub: e-hossam96/arabic-nano-gpt

The model achieves the following results on the held-out test set:

  • Loss: 3.28796

How to Use

import torch
from transformers import pipeline

model_ckpt = "e-hossam96/arabic-nano-gpt-v0"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


lm = pipeline(task="text-generation", model=model_ckpt, device=device)

prompt = """المحرك النفاث هو محرك ينفث الموائع (الماء أو الهواء) بسرعة فائقة \
لينتج قوة دافعة اعتمادا على مبدأ قانون نيوتن الثالث للحركة. \
هذا التعريف الواسع للمحركات النفاثة يتضمن أيضا"""

output = lm(prompt, max_new_tokens=128)

print(output[0]["generated_text"])

Model description

  • Embedding Size: 256
  • Attention Heads: 4
  • Attention Layers: 4

Training and evaluation data

The entire wikipedia dataset was split into three splits based on the 90-5-5 ratios.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 24

Training Loss

Training Loss

Validation Loss

Validation Loss

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.0
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
14
Safetensors
Model size
5.52M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for e-hossam96/arabic-nano-gpt-v0

Finetuned
(1323)
this model

Dataset used to train e-hossam96/arabic-nano-gpt-v0

Collection including e-hossam96/arabic-nano-gpt-v0