processors
Processors are used to prepare inputs (e.g., text, image or audio) for a model.
Example: Using a WhisperProcessor
to prepare an audio input for a model.
import { AutoProcessor, read_audio } from '@huggingface/transformers';
const processor = await AutoProcessor.from_pretrained('openai/whisper-tiny.en');
const audio = await read_audio('https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac', 16000);
const { input_features } = await processor(audio);
// Tensor {
// data: Float32Array(240000) [0.4752984642982483, 0.5597258806228638, 0.56434166431427, ...],
// dims: [1, 80, 3000],
// type: 'float32',
// size: 240000,
// }
- processors
- static
- .Processor
new Processor(config, components)
- instance
.image_processor
β*
.tokenizer
βPreTrainedTokenizer
|undefined
.feature_extractor
β*
.apply_chat_template(messages, options)
β*
.batch_decode(...args)
β*
._call(input, ...args)
βPromise.<any>
- static
.from_pretrained(pretrained_model_name_or_path, options)
βPromise.<Processor>
- .Processor
- inner
~PreTrainedTokenizer
:Object
- static
processors.Processor
Represents a Processor that extracts features from an input.
Kind: static class of processors
- .Processor
new Processor(config, components)
- instance
.image_processor
β*
.tokenizer
βPreTrainedTokenizer
|undefined
.feature_extractor
β*
.apply_chat_template(messages, options)
β*
.batch_decode(...args)
β*
._call(input, ...args)
βPromise.<any>
- static
.from_pretrained(pretrained_model_name_or_path, options)
βPromise.<Processor>
new Processor(config, components)
Creates a new Processor with the given components
Param | Type |
---|---|
config | Object |
components | Record.<string, Object> |
processor.image_processor β <code> * </code>
Kind: instance property of Processor
Returns: *
- The image processor of the processor, if it exists.
processor.tokenizer β <code> PreTrainedTokenizer </code> | <code> undefined </code>
Kind: instance property of Processor
Returns: PreTrainedTokenizer
| undefined
- The tokenizer of the processor, if it exists.
processor.feature_extractor β <code> * </code>
Kind: instance property of Processor
Returns: *
- The feature extractor of the processor, if it exists.
processor.apply_chat_template(messages, options) β <code> * </code>
Kind: instance method of Processor
Param | Type |
---|---|
messages | * |
options | * |
processor.batch_decode(...args) β <code> * </code>
Kind: instance method of Processor
Param | Type |
---|---|
...args | * |
processor._call(input, ...args) β <code> Promise. < any > </code>
Calls the feature_extractor function with the given input.
Kind: instance method of Processor
Returns: Promise.<any>
- A Promise that resolves with the extracted features.
Param | Type | Description |
---|---|---|
input | any | The input to extract features from. |
...args | any | Additional arguments. |
Processor.from_pretrained(pretrained_model_name_or_path, options) β <code> Promise. < Processor > </code>
Instantiate one of the processor classes of the library from a pretrained model.
The processor class to instantiate is selected based on the image_processor_type
(or feature_extractor_type
; legacy)
property of the config object (either passed as an argument or loaded from pretrained_model_name_or_path
if possible)
Kind: static method of Processor
Returns: Promise.<Processor>
- A new instance of the Processor class.
Param | Type | Description |
---|---|---|
pretrained_model_name_or_path | string | The name or path of the pretrained model. Can be either:
|
options | PretrainedProcessorOptions | Additional options for loading the processor. |
processors~PreTrainedTokenizer : <code> Object </code>
Additional processor-specific properties.
Kind: inner typedef of processors
< > Update on GitHub