timm documentation

RegNetX

You are viewing v1.0.13 version. A newer version v1.0.14 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

RegNetX

RegNetX is a convolutional network design space with simple, regular models with parameters: depthd d , initial widthw0>0 w_{0} > 0 , and slopewa>0 w_{a} > 0 , and generates a different block widthuj u_{j} for each blockj<d j < d . The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): uj=w0+waj u_{j} = w_{0} + w_{a}\cdot{j}

For RegNetX we have additional restrictions: we setb=1 b = 1 (the bottleneck ratio),12d28 12 \leq d \leq 28 , andwm2 w_{m} \geq 2 (the width multiplier).

How do I use this model on an image?

To load a pretrained model:

>>> import timm
>>> model = timm.create_model('regnetx_002', pretrained=True)
>>> model.eval()

To load and preprocess the image:

>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension

To get the model predictions:

>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])

To get the top-5 predictions class names:

>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]

Replace the model name with the variant you want to use, e.g. regnetx_002. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the timm feature extraction examples, just change the name of the model you want to use.

How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

>>> model = timm.create_model('regnetx_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)

To finetune on your own dataset, you have to write a training loop or adapt timm’s training script to use your dataset.

How do I train this model?

You can follow the timm recipe scripts for training a new model afresh.

Citation

@misc{radosavovic2020designing,
      title={Designing Network Design Spaces},
      author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár},
      year={2020},
      eprint={2003.13678},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
< > Update on GitHub