Dataset viewer documentation

Pandas

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Pandas

Pandas is a popular DataFrame library for data analysis.

To read from a single Parquet file, use the read_parquet function to read it into a DataFrame:

import pandas as pd

df = (
    pd.read_parquet("https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet")
    .groupby('sign')['text']
    .apply(lambda x: x.str.len().mean())
    .sort_values(ascending=False)
    .head(5)
)

To read multiple Parquet files - for example, if the dataset is sharded - you’ll need to use the concat function to concatenate the files into a single DataFrame:

urls = ["https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet", "https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0001.parquet"]

df = (
      pd.concat([pd.read_parquet(url) for url in urls])
      .groupby('sign')['text']
      .apply(lambda x: x.str.len().mean())
      .sort_values(ascending=False)
      .head(5)
)
< > Update on GitHub